
CS 1110, Spring 2020: Prelim 1 Study Guide
Prepared Monday March 2, 2020 by L. Lee and A. Kellison

Updated Tuesday, March 3, 2020.

Updated Wednesday, March 4, 2020

Administrative info

Time and locations of the regular exam listed at http://www.cs.cornell.edu/courses/cs1110/2020sp/exams
What room to go to is determined by your NetID: check the website beforehand for where you,
personally, should go.

For makeup exam requests, CS1110 administrative assistant Ms. Lacy Lucas (LSL92) will be contacting
students directly. If you haven’t heard anything by noon on Fri. Mar. 6, please email Ms. Lucas to check
in.

Bring your Cornell ID and writing/erasing utensils. The exam is closed book, “closed notes,” no
electronic or external aids, etc. We will be checking IDs, possibly at the beginning of the exam, possibly
when you turn in your exam.

We will provide some function/method references as in prior exams, but will not be able to specify ahead
of time what will be on it.

Topic coverage

The prelim covers material from lectures 1-12 inclusive (start of course until Tuesday, March 3 rd
inclusive), assignments A1-A3, and labs 01-06.

For objects, we will explain to you any necessary information about the objects’ class, so you do not need
to understand the mechanics of class definitions. For for-loops, we expect you to be able to analyze the
behavior of a given for-loop and you may be asked to write one yourself.

String methods split and join are on the last slide for lecture 10 (Thursday, February 20th). Since they are
so useful, you ought to get acquainted with them; note in various prior prelims how they lead to short
solutions for realistic problems.

Our mechanisms to help you prepare

The lecture of Thu. Mar 5th will be a review session with a prepared presentation.

http://www.cs.cornell.edu/courses/cs1110/2018sp/exams

The lectures and labs of Tue. Mar 10th will be open office hours held at the usual locations of those labs
and lectures.1 The full menu of office/consulting hours can be viewed here:
https://www.cs.cornell.edu/courses/cs1110/2020sp/staff

The staff are offering a limited number of extra 1-on-1s; keep an eye on the corresponding CMS
“assignment.” These 1-on-1 appointments should be reserved for questions that would not be suitable for
a group setting.

Solutions and grades for A2 will be posted by Tues. March 3rd (target: early morning, but no
guarantees).2

Code examples are posted for most lectures to exemplify the corresponding topics; see the course lectures
page, https://www.cs.cornell.edu/courses/cs1110/2019sp/schedule/

We have posted many prior CS1110 exams and their solutions to the web page,
https://www.cs.cornell.edu/courses/cs1110/2020sp/exams/; more about these below.

Recommendations for preparing, in no particular order
1. Go through the lecture slides, making sure you understand each example.
2. Be able to do the assignments and labs cold.3
3. Do relevant problems from previous exams, as noted below.

a. While you may or may not want to start studying by answering questions directly on a
computer, by the time the exam draws nigh, you want to be comfortable answering
coding questions on paper, since doing so is a way to demonstrate true fluency.4

b. Warning: it is difficult for students to recognize whether their answers are actually
similar to or are actually distant from solutions we would accept as correct. So, rather
than saying “oh, my solution looks about the same”, we suggest you try out your answers
by coding them up in Python where possible, and seeing what happens on test instances
that the exam problems typically provide.

c. Strategies for answering coding questions:
i. When asked to write a function body, always first read the specifications

carefully: what are you supposed to return? Are you supposed to alter any lists or
objects? What are the preconditions? If you aren't sure you understand a
specification, ask.

ii. For this semester, do NOT spend time writing code that checks or asserts
preconditions, in the interest of time. That is, don't worry about input that doesn't
satisfy the preconditions.

1 There will not be a new lab exercise released the week of the prelim. The lab sessions of
Wed. Mar 11th are canceled, so don’t show up.
2 By agreement with other CS1110 instructors, we do not release lab solutions. The A1
solutions will likely be released by Wednesday, March 4th.
3 But note we didn’t necessarily expect you to find them straightforward at the time they
were assigned.
4 Many coding interviews at companies are conducted at a whiteboard.

https://www.cs.cornell.edu/courses/cs1110/2020sp/staff/
https://www.cs.cornell.edu/courses/cs1110/2020sp/exams/
https://www.cs.cornell.edu/courses/cs1110/2019sp/schedule/

iii. After you write your answer, double-check that it gives the right answers on the
test cases --- any we give you, plus any you think of. Also, double check that
what your code returns on those test cases satisfies the specification.5

iv. Comment your code if you're doing anything unexpected. But don't overly
comment - you don't have that much time.

v. Use variable names that make sense, so we have some idea of your intent.

vi. If there's a portion of the problem you can't do and a part you can, you can try for
partial credit by having a comment like
 # I don't know how to do <x>, but assume that variable start
 # contains ... <whatever it is you needed>"
That way you can use variable start in the part of the code you can do.

4. Check out the code examples that are posted along with the lecture handouts. See that you
understand what they are doing, and perhaps even see if you can reproduce them.

5. Buddy up: at office hours, lab, or via Piazza, try to find a study partner who would be well-
matched with you, and try solving problems together.

Notes on questions from prior exams and review
materials

In general

The style of Prelim 1 Spring 2020 is likely to be closer in spirit to the Spring 2018, 2017, 2014, and 2013
exams than the fall exams and other spring exams.

Some prelim 1s have used assert; we have not covered it and you are not expected to know it for the
Spring 2020 prelim.

In general, Spring 2015 and Spring 2016 use different variable naming conventions from what we use: we
would reserve capital letters for class names, and use more evocative variable names.

Fall questions for which one-frame-drawn-per-line notation is used would need to be converted to our
one-frame-per-function notation.

Where you see lines of the form “if __name__ == ‘__main__’:”, think of them as indicating that the
indented body underneath it should be executed for doing the problem.

Before Fall 2017, the course was taught in Python 2; perhaps the biggest difference this makes in terms of
the relevance of previous prelims is that questions regarding division (/) need to be rephrased. Also,
python2’s print didn’t require parentheses and allowed you to give multiple items of various types

5 It seems to be human nature that when writing code, we focus on what the code does
rather than what the code was supposed to do. This is one reason we so strongly recommend
writing test cases before writing the body of a function.

separated by commas (which would print as spaces). In some cases, instances of range()in a Python 2
for-loop header might need to be replaced with list(range()), and similarly for map() and filter().

Review Session Materials From Previous Semesters

Update Wednesday March 4th, 2020 (previous version had URL to 2017 exams, see below)
2019 Fall:
The version with no answers is here:
https://www.cs.cornell.edu/courses/cs1110/2019fa/exams/prelim1/prelim1-review-noanswers.pdf
(2017: https://www.cs.cornell.edu/courses/cs1110/2017fa/exams/prelim1/prelim1-review.pdf)
The version with answers is here:
https://www.cs.cornell.edu/courses/cs1110/2019fa/exams/prelim1/prelim1-review.pdf
(2017: https://www.cs.cornell.edu/courses/cs1110/2017fa/exams/prelim1/prelim1-review.pdf)

STARTING WITH SLIDE 8, the info before slide 8 is not relevant to our course this semester; nor is any
mention of what could be on the exam or guarantees about the exam.

 Question starting on slide 8: you definitely need to be able to use find/index and string slicing, but for
the record, here’s an alternate solution that uses split:

 Example with a mutable object: our notation differs a little – there should be a RETURN value in the
frame, even if it is None.

Notes on Prelim 1 from Previous Semesters

2019 Fall:
 Question 2(d): skip; we haven’t covered try/except
 Question 3: “The Heap” is “Heap Space.” Fall questions for which one-frame-drawn-per-line

notation is used would need to be converted to our one-frame-per-function notation.

def make_netid(name, n):
 components = name.lower().split()
 fletter = components[0][0]
 lletters = components[len(components) - 1][0] # last letter; might
add mid initial

 # glue middle initial in front of lletters if there is one
 if len(components) == 3:
 lletters = components[1][0] + lletters

 return fletter + lletters + str(n)

https://www.cs.cornell.edu/courses/cs1110/2017fa/exams/prelim1/prelim1-review.pdf
https://www.cs.cornell.edu/courses/cs1110/2017fa/exams/prelim1/prelim1-review.pdf
https://www.cs.cornell.edu/courses/cs1110/2019fa/exams/prelim1/prelim1-review.pdf
https://www.cs.cornell.edu/courses/cs1110/2019fa/exams/prelim1/prelim1-review-noanswers.pdf

 Question 5(c): skip; we haven’t covered assert statements.
 Question 6 involves a bit of geometric reasoning as well as coding ability. We might not stress

the mathematical/geometric reasoning as much.

2019 Spring:
 Update Tuesday March 3rd Question 3(b): Read the problem carefully! A correct solution is

dependent on the condition that participation grades are values > 0.0 but <= 2.0.6

Alternate solution using a for-loop:

Alternate solution (adapted from) suggestion from CS 1110 student on Piazza:

Note that an if-else statement is not used in either of the above alternate solutions; it is unnecessary.
The original solution provided for the prelim could also easily avoid the use of an if statement.

 Update Tuesday March 3rd Question 5(a) should have had a specification for the function
fight(attack) explaining what it is supposed to do. We will be sure to give the specifications
of necessary functions in your Spring 2020 Prelim 1. It is important to note that, although the
function fight sometimes triggers a Python error, there isn’t an error inside the function fight.

6 Spring 2020 staff would have written the problem with the condition that missing a lecture
results in a 0, not a 0.0. In particular, we might want to differentiate between list and list2
below, but the method count() does not.
>>> list = [0.0,0]
>>> list2 = [0,0]
>>> list.count(0)
2
>>> list2.count(0)
2

def needs_alarm(complete_scores, num_lectures):
 count = 0
 for score in complete_scores:
 if score == 0:
 # count = count + 1
 count += 1
 return num_lectures/3 < count < 2*num_lectures/3

def needs_alarm(complete_scores, num_lectures):
 missed_class = complete_scores.count(0)
 return num_lectures/3 < missed_class < 2*num_lectures/3

 Question 6: There are multiple alternate solutions; note that the solution provided relies on
hidden.find() returning -1 if there are 0 occurrences of “guess” in “hidden;” An alternate
solution that uses hidden.index():

2018 Fall:
 Question 5, part (c) : Skip; assert statements will not be on Prelim 1 for spring 2020.
 Question 6: You are not expected to know what “invariants” are for the spring 2020 prelim, but

you should still be able to implement the function according to the specification.

2018 Spring:
 Question 2, part (a): The informal specification for the script make_my_grade() states that the

argument is a list of ints. The example test cases listed in the solutions includes a test on a list of
floats: you should not test for cases that do not meet the preconditions of the script, you want
cases that represent valid inputs.

 Question 5: The question refers to assignment 2 form Spring 2018, which can be found here:
https://www.cs.cornell.edu/courses/cs1110/2018sp/assignments/index.php

2017 Fall:
 Question 1(b) Skip “How do they differ?”
 Question 1(c) Alternate answers: a parameter of a function is a special kind of local variable that

is where the arguments to the function are initially stored; an argument is a value that is passed in
as input to a function; argument values are placed in parameter variables at the beginning of the
execution of a function call.

 Question 1(d) be sure you understand why the answer is a good one, but we are not asking you to
memorize four specific points.

 Question 4: replace “arbitrary number” with “arbitrary positive number”. It seems OK to leave
unspecified whether ‘LL0’ (ell-ell-zero) is a valid netid.

def process_guess(hidden, shown, guess, guesses_left):
 count = hidden.count(guess)
 new_shown = shown
 if count != 0:
 i = hidden.index(guess)
 new_shown = shown[:i]+guess+shown[i+1:]
 if (new_shown == hidden):
 print("YOU WIN!")
 elif guesses_left == 1:
 print("YOU LOSE!")
 return new_shown

https://www.cs.cornell.edu/courses/cs1110/2018sp/assignments/index.php

Alternate solution:

 Question 5: Alternate fix to 4th bug: change the if-statement to begin
 if pos > 0 and pos < minpos:

 Question 6: Alternate solution:

def twinsies(netid1, netid2):
 netid1 = netid1.lower()
 netid2 = netid2.lower()

 if netid[2].isalpha():
 numstart1 = 3 # where the numbers start in netid1
 else:
 numstart1 = 2

 init1 = netid1[:numstart1]
 digits_as_int = int(netid1[numstart1:])

 return netid2 == init1+str(digits_as_int+1) or netid2 == init1+str(digits_as_int=1)

def expand(rect, x,y):
 if x > rect.x + rect.width:
 # x is outside to the right
 rect.width = x – x.rect # Don’t change x.rect
 elif x < rect.x:
 # x is outside to the left
 new_width = rect.width + (rect.x – x)
 rect.x = x
 rect.width = new_width

 if y < rect.y:
 # y is outside above
 new_height = rect.height + (rect.y – y)
 rect.y = y
 rect.height = new_height
 elif y > rect.y + rect.height:
 # y is outside below
 rect.height = rect.height + (y – rect.y)

2017 Spring:
 Question 2(a) solution: we were definitely not expecting student answers along the lines of the

latter two solutions. As for that one-liner solution: it trades off a cleverness with the tools Python
supplies with not being very easy to read and comprehend.

 Question 4: In some versions of the solutions pdf, the first couple of lines have been cut off. The
first code block should read:

Making some aliases to reduce typing
old_a1 = p1.bank_acct
old_a2 = p2.bank_acct
new_acct = Acct(old_a1.balance + old_a2.balance)

 Question 8: you can ignore the solution that uses try/except: we haven’t covered it yet.

2016 Fall:
 Question 2(a): also acceptable for the definition of parameter is, “the variables in which the

arguments (input values) to a function are initially stored.
 Skip Question 2(b) (we did not introduce the terms being asked about)
 Question 2(d) solution: ignore phrase “or 3/2.0” (based on Python2’s / being int division for

integers)
 Skip most of Question 3(b) (good question, but too lecture-dependent, and also have to convert to

Python3 int division) BUT:
o The following question is fair game: where and what is the cause of the bug that causes

the UnboundLocalError error message (the second test in the question).
o return prefix in the solution version of anglicize (third bug) should be return pref

 Question 4: specification is unclear as to whether year could be a single digit. Be able to handle
either case.

 Question 6(a) assume import math was executed. Don’t worry about the fact that we’re
comparing equality of floats. An alternate solution is

2016 Spring:
 Skip Question 3 (we haven’t done while-loops yet)
 Skip Question 6 (we didn’t do as much with the random module)

2015 Fall:
 Question 4(a) – solutions have typos.
 Skip Question 4(b) (we have not covered asserts)

def normalize(v):
 norm = math.sqrt(v.x**2 + v.y**2)
 if norm != 0.0:

v.x = v.x/norm
v.y = v.y/norm

2015 Spring:

 Question 1(b): the question is better stated as, “under what conditions on s will s and u print out
as the same string s, where contains some arbitrary, unknown string?” (Also, Python3 replaced
raw_input with input)

 Question 3(c): replace / with // because of switch to Python 3

 Question 3(e): solution should be:
1 2
1 1 3
3 2
B

 Skip Question 4 (too assignment dependent)

 Question 5(a): you don’t have to know what raw_input ()(or, in Python 3, input()) does to
answer the question.

2014 Spring

 Question 5: the last line in the code, which is a print statement, must, in Python 3, be written as
print(nextlist[0].name)

 Question 6: there is no need to explicitly cast to floats in Python 3, because / in Python 3 is float
division.

 Question 7: for the avg function from Q6 to work, and also to be consistent with what we’ve said
about “listifying” the output of the map function in Python 3, the answer for Python3 should be
return avg(list(map(float, num_as_str.split())))

2014 Fall:

 Question 2(b): solution is based on / being int division in python 2

 Skip Question 2(d): we did not formally define watches and traces

 Skip Question 4(a): (we have not covered “bare” asserts)

 Question 6 involves quite a bit of geometric reasoning as well as coding ability. We might not
stress mathematical/geometric reasoning to quite the same degree.

2013 Spring:

 Question 5(b): some version of the solutions use a Python-specific trick about what happens when a
slice uses invalid indices. Since this trick has surprised and confused generations of CS1110 students,
we have tried to replace that solution pdf online wherever possible, but versions keep coming up.
Here is a solution that doesn’t inflict that Python-specific trick on CS1110 students:

 Question 6: change cunittest2 to cornellasserts.

Fall 2013:

 Skip Question 2(d) - we have not covered “bare” asserts.

Many solutions were possible.
A common error was to try something like if inits in all last. The
problem is
that all last is a list of LastUsed objects, not strings, and inits
is a string.

if mname == '':
 inits = fname[0] + lname[0]
else:
 inits = fname[0] + mname[0] + lname[0]
i = last.ind(all last, inits) # inits is new iff i is -1

if i != -1:
 all last[i].suffix = all last[i].suffix + 1
 suf = all last[i].suffix
else:
 all last.append(last.LastUsed(inits,1))
 suf = 1

return inits + str(suf)

	CS 1110, Spring 2020: Prelim 1 Study Guide
	Administrative info
	Topic coverage
	Our mechanisms to help you prepare
	Recommendations for preparing, in no particular order
	Notes on questions from prior exams and review materials
	In general

	Review Session Materials From Previous Semesters
	Notes on Prelim 1 from Previous Semesters

