Presentation 23

Generators

Announcements for This Lecture

Assignment 6

Lesson Videos

- These are now graded
- Mean: 92, Median: 95
- Within expectations
- We removed hard part
- Limited regrades
- Again major issues only
- We are very behind here
- A7 is only thing left
- Almost all are posted
- Lesson 28 for today
- Lesson 29 next time

Labs

- Today is more GUIs
- Generators will be Tues
- Coupled with coroutines

From Last Time: More Buttons

Button is Up

Button is Down

From Last Time: Composite Objects

- Way to "group" objects
- Has a single x, y attribute
- Moving obj moves all
- Code like subcontroller.py
- Each object is attribute
- Initialize them in \qquad init

- Needs a custom draw
- Update not necessary
- Used in end of Task 1

Activity: Call Frame Time

Function Defintions

Function Call

def rnginv(n): \#Inverse range >>> x = harmonic(2)
19 for x in range $(1, \mathrm{n})$: Assume we are here:
20 yield $1 / x$
def harmonic(n): \#Harmonic sum
32 sum $=0$

harmonic	n	2	34
$\operatorname{sum} \boxed{0}$	\& id3		

$33 \mathrm{~g}=\operatorname{rnginv}(\mathrm{n})$
34 for x in g :
35 sum = sum $+x$
36 return x

Ignoring the heap, what is the next step?

Which One is Closest to Your Answer?

rnginv	n	2
x	$\mathbf{1}$	

D:	harmonic		2	3
	sum 0	8 id3		
	rnginv		2	2
	x 1		YIEL	1

Generators

Which One is Closest to Your Answer?

Activity: Call Frame Time

Function Defintions

Function Call

def rnginv(n): \#I
for x in range(l,n):

19	for x in rang
20	yield l / x

def harmonic(n): \#Harmonic sum
32 sum $=0$
$33 \mathrm{~g}=\operatorname{rnginv}(\mathrm{n})$
34 for x in g :
35 sum = sum $+x$
36 return x

Which One is Closest to Your Answer?

B:	harmoni		2	34
	sum 0	id3		

rnginv	n 2	20
$\mathrm{x} \boxed{1}$		

D:	harmonic		2	3	
	sum 0	g id3			
	rnginv		2		
	$\mathrm{x} \quad 1$		YIEL	1	

Activity: Call Frame Time

Function Defintions

Function Call

def $\operatorname{rnginv(n):~\# In~}$	
19 for x in $\operatorname{range}(1, n)$:	

20 yield $1 / x$
def harmonic(n): \#Harmonic sum
32 sum $=0$
$33 \mathrm{~g}=\operatorname{rnginv}(\mathrm{n})$
34 for x in g :
35 sum = sum $+x$
36 return x

Which One is Closest to Your Answer?

rnginv	n 2	19
x 1	YIELD	1

D:

harmonic	n 2	34
sum 0	g id3	
rnginv	n 2	
$\mathrm{x} \quad 1$	RETURN	1

Activity: Call Frame Time

Function Defintions

Function Call

def rnginv(n): \#Inverse range >>> x = harmonic(2)

20 yield $1 / \mathrm{x}$
def harmonic(n): \#Harmonic sum
32 sum $=0$
$33 \mathrm{~g}=\operatorname{rnginv}(\mathrm{n})$
34 for x in g :
35 sum = sum $+x$
36 return x

D:	harmonic	$\mathrm{n} \mid 2$	$\mathbf{3 4}$
sum	0	\&	id3

rnginv

What is the next step?

Which One is Closest to Your Answer?

Activity: Call Frame Time

Function Defintions

Function Call

def rnginv(n): \#In
for x in range(l, $n)$:

19	for x in rang
20	yield l / x

def harmonic(n): \#Harmonic sum
32 sum $=0$
$33 \mathrm{~g}=\operatorname{rnginv}(\mathrm{n})$
34 for x in g :
35 sum = sum $+x$
36 return x

Which One is Closest to Your Answer?

A:	harmonic		n 2			34
	sum 1	g	id3		x 0	0.5

B:	harmonic	n	2	
	$\mathbf{3 4}$			
sum	l	g	id3	x
	l			

$\mathrm{C}:$	harmonic	n	2	

| rnginv | n 2 | 19 |
| :---: | :---: | :---: | :---: |
| $\mathrm{x} \square \mathrm{l}$ | | |

D:	harmonic	n	2	$\mathbf{3 4}$

rnginv
n 2 20
x 2

Activity: Call Frame Time

Function Defintions

Function Call

def rnginv(n): \#Inverse range >>> x = harmonic(2)

20 yield $1 / \mathrm{x}$
def harmonic(n): \#Harmonic sum
32 sum $=0$
$33 \mathrm{~g}=\operatorname{rnginv}(\mathrm{n})$
34 for x in g :
35 sum = sum +x
36 return x

Which One is Closest to Your Answer?

B:	harmon					34
	sum 1	g	id 3			1

rnginv	n	2
x	19	

D:	harmonic	n	2	
	$\mathbf{3 4}$			
sum	0	g	id3	x
	l			

rnginv	$\mathrm{n} \boxed{2}$	20
$x \boxed{2}$		

Activity: Call Frame Time

Function Defintions

Function Call

def $\operatorname{rnginv(n):~\# In~}$		
19 for x in $\operatorname{range}(1, n)$:		

20 yield $1 / x$
def harmonic(n): \#Harmonic sum
32 sum $=0$
$33 \mathrm{~g}=\operatorname{rnginv}(\mathrm{n})$
34 for x in g :
35 sum = sum $+x$
36 return x

Functions to Generators

def harmonic(n):
IIIII
Generates the partial sums of the harmonic series up $1 / n$

The partial sum for k is $1+1 / 2+1 / 3+\ldots+1 / k$

Parameter n: The range bounds
Precondition: n is an int >0
IIIII
pass

Chaining Generators

def sumfold(input):
IIIII
Generates the sums of the numbers seen so far in input

Example: sumfold([1,2,3]) generates the numbers 1, 3, and 6

Parameter input: The input data to sum
Precondition: input is a iterable of numbers (int or float) """
pass

Chaining Generators

def sumfold(input):
IIIII
Generates the sums of the numbers seen so far in input

Example: sumfold([1, 2, $3 \longdiv { \begin{array} { c } { \text { For maximum } } \\ { \text { flexibility } } \end{array} }$ pers 1,3 , and 6
Parameter input: The inptoy
Precondition: input is a iterable of numbers (int or float) """
pass

Chaining Generators

def filterdiv(input,n):
"""Generates all elements of input evenly divisble by n

The elements are generated in the order they appear in input.

Example: filterdiv([1,2,3,4],2) generates the numbers 2 and 4

Parameter input: The input data to filter
Precondition: input is a iterable of int

Parameter n: The number to divide by
Precondition: n is an int"""
pass

Questions?

