
Conditionals

Module 9

Structure vs. Flow

Program Structure

• Order code is presented
§ Order statements are listed
§ Inside/outside of function
§ Will see other ways…

• Defines possibilities over
multiple executions

Program Flow

• Order code is executed
§ Not the same as structure
§ Some statements duplicated
§ Some statements skipped

• Defines what happens in a
single execution

9/19/19 Conditionals & Program Flow 2

Have already seen this
difference with functions

Structure vs. Flow: Example

Program Structure

def foo():
print('Hello')

Script Code
foo()
foo()
foo()

Program Flow

> python foo.py
'Hello'
'Hello'
'Hello'

9/19/19 Conditionals & Program Flow 3

Statement
listed once

Statement
executed 3x

Bugs occur when flow does
not match expectations

Why Is This Important

• You have been writing “straight-line” code
§ Every line of code you write executed in order
§ Functions mainly used to group code together

• But it is possible to control program flow
§ Ask Python to skip over statements
§ Ask Python to repeat statements

• This requires a control-flow statement
§ Category of statements; not a single type
§ This video series will cover the conditional

Conditionals: If-Statements

Format
if expression :

statement
…
statement

Example
Put x in z if it is positive
if x > 0:

z = x

9/19/19 Conditionals & Program Flow 5

Execution:

If expression is True, execute all statements indented underneath

Indent

Python Tutor Example

Conditionals: “Control Flow” Statements

if b :

s1 # statement
s3

s1

s3

b Branch Point:
Evaluate & Choose

Statement: Execute

Flow
Program only takes

one path each
execution

Conditionals: If-Else-Statements

Format
if expression :

statement
…

else:
statement
…

Example
Put max of x, y in z
if x > y:

z = x
else:

z = y

9/19/19 Conditionals & Program Flow 8

Execution:

If expression is True, execute all statements indented under if.
If expression is False, execute all statements indented under else.

Python Tutor Example

Conditionals: “Control Flow” Statements

if b :
s1

else:
s2

s3

s1

s3

s2

b Branch Point:
Evaluate & Choose

Statement: Execute
Flow

Program only
takes one path
each execution

Conditionals: If-Elif-Else-Statements

Format
if expression :

statement
…

elif expression :
statement
…

…
else:

statement
…

Example

Put max of x, y, z in w
if x > y and x > z:

w = x
elif y > z:

w = y
else:

w = z

9/19/19 Conditionals & Program Flow 11

Python Tutor Example

Conditionals: If-Elif-Else-Statements

Format
if expression :

statement
…

elif expression :
statement
…

…
else:

statement
…

Notes on Use

9/19/19 Conditionals & Program Flow 13

• No limit on number of elif
§ Can have as many as want
§ Must be between if, else

• The else is always optional
§ if-elif by itself is fine

• Booleans checked in order
§ Once it finds first True,

skips over all others
§ else means all are false

Problem Statement

• Common pattern: if-statements w/ assignments
§ Need to assign a value to a single variable
§ But the actual value depends on the flow

• Example:
if x > y:

z = x
else:

z = y

All to assign to z.
Is there an easier way?

Conditional Expressions

Format

e1 if bexp else e2
• e1 and e2 are any expression

• bexp is a boolean expression

• This is an expression!

Example

Put max of x, y in z
z = x if x > y else y

expression,
not statement

Using Conditionals

• Conditionals: when variables are unknown
§ Conditionals test different possibilities
§ If you always know value, only one choice

• When can variables be unknown?
§ When they are the result of user input
§ When they are the result of a function call

• Conditionals are a natural fit for functions

Program Flow and Call Frames

def max(x,y):
"""Returns: max of x, y"""
simple implementation

1 if x > y:
2 return x

3 return y

max(3,0):

max 2

x 3

y 0

Frame sequence
depends on flow

Reaches line 2

Program Flow and Call Frames

def max(x,y):
"""Returns: max of x, y"""
simple implementation

1 if x > y:
2 return x

3 return y

max(0,3):

max 3

x 0

y 3

Frame sequence
depends on flow

Skips line 2

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y

1 if x > y:
2 temp = x
3 x = y
4 y = temp

5 return y

• temp is needed for swap
§ x = y loses value of x
§ “Scratch computation”
§ Primary role of local vars

• max(3,0):

max

x 0 y 3

RETURN 3

temp 3

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y

1 if x > y:
2 temp = x
3 x = y
4 y = temp

5 return y

• temp is needed for swap
§ x = y loses value of x
§ “Scratch computation”
§ Primary role of local vars

• max(0,3):

max

x 0 y 3

RETURN 3

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y
if x > y:

temp = x
x = y
y = temp

return temp

• Value of max(3,0)?

A: 3
B: 0
C: Error!
D: I do not know

• Local variables last until
§ They are deleted or
§ End of the function

• Even if defined inside if

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y
if x > y:

temp = x
x = y
y = temp

return temp

• Value of max(3,0)?

A: 3
B: 0
C: Error!
D: I do not know

CORRECT

• Local variables last until
§ They are deleted or
§ End of the function

• Even if defined inside if

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y
if x > y:

temp = x
x = y
y = temp

return temp

• Value of max(0,3)?

A: 3
B: 0
C: Error!
D: I do not know

• Variable existence
depends on flow

• Understanding flow
is important in testing

Program Flow vs. Local Variables

def max(x,y):
"""Returns: max of x, y"""
swap x, y
put the larger in y
if x > y:

temp = x
x = y
y = temp

return temp

• Value of max(0,3)?

A: 3
B: 0
C: Error!
D: I do not know

CORRECT

• Variable existence
depends on flow

• Understanding flow
is important in testing

Testing and Code Coverage

• Typically, tests are written from specification
§ This is because they should be written first
§ You run these tests while you implement

• But sometimes tests leverage code structure
§ You know the control-flow branches
§ You want to make sure each branch is correct
§ So you explicitly have a test for each branch

• This is called code coverage

A Simple Example

def anglicize(n):
"""Returns: English equiv of n

Precondition: n in 1..19"""
if n == 1:

return 'one'
…
elif n == 18:

return 'eighteen'

return 'nineteen'

Need a test for
each “branch”

Walkthrough
test script for

anglicize()

Which Way is Correct?

• Code coverage requires knowing code
§ So it must be done after implementation
§ But best practice is to write tests first

• Do them BOTH
§ Write tests from the specification
§ Implement the function while testing
§ Go back and add tests for full coverage
§ Ideally this does not require adding tests

Recall: Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""
end_first = n.find(' ')
print(end_first)
first = n[:end_first]
print(str(first))
last = n[end_first+1:]
print(str(last))
return last+', '+first

Print variable after
each assignment

Necessary
because do
not always
have Tutor

Visualizing Code

• These print statements are called Watches
§ Looks at variable value after assignment
§ It is watching for any possible changes

• But now we have a different problem
§ Program flow can take many paths
§ Often unsure of which path taken
§ Want print statements to trace code path

• Obviously these are called Traces

Traces and Functions

print('before if')
if x > y:

print('if x>y')
z = y
print(z)

else:
print('else x<=y')
z = y
print(z)

print('after if')

Watches Traces

Example: flow.py

Traces and Functions

print('before if')
if x > y:

print('if x>y')
z = y
print(z)

else:
print('else x<=y')
z = y
print(z)

print('after if')

Watches Traces

Example: flow.py

Scripts vs. Modules

• The difference is how to use the file
§ Modules are meant to be imported
§ Scripts are run from command line

• But sometimes want to import a script
§ Want access to functions in the script
§ But do not want to run the whole script

• Example: Test scripts
§ Each test is its own procedure

Idea: Conditional Execution

• Want script to NOT execute on import
§ Script Code: code at the bottom of file
§ Typically calls functions defined

• Can do this with an if-statement
if __name__ == '__main__’:

• Demo with test script

Special pre-assigned
variable when run

Name assigned
when run as script

