
Testing

Module 8



Basic Concepts

• Some important terms
§ Bug:  Error in a program.  (Always expect them!)
§ Debugging: Process of finding & removing bugs
§ Testing: Process of analyzing & running a program 

• Testing is a common way to search for bugs
§ However, it is not the only way
§ And it does not address how to remove them

• Good debugging starts with testing



Test Cases: Searching for Errors

• Testing is done with test cases
§ An input, together with an expected output
§ Input is the one (or more) argument(s)
§ Output is what is returned
§ Or what side-effect the procedure causes

• A list of test cases is testing plan
§ Similar to what we did when reading specs



Testing Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o', and 'u'. 'y' is a vowel if it is 
not at the start of the word.

Repeated vowels are counted separately.  Both upper case and   
lower case vowels are counted.

Examples: ….

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""



Testing Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o', and 'u'. 'y' is a vowel if it is 
not at the start of the word.

Repeated vowels are counted separately.  Both upper case and   
lower case vowels are counted.

Examples: ….

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""

INPUT OUTPUT
'hat' 1
'heat' 2
sky' 1
'year' 2
'xxx' 0



Recall: Workflow for this Course

1. Write a procedure (function) in a module

2. Open up the Terminal

3. Move to the directory with this file

4. Start Python (type python)

5. Import the module

6. Call the procedure (function)

Testing!
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Testing Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o', and 'u'. 'y' is a vowel if it is 
not at the start of the word.

Repeated vowels are counted separately.  Both upper case and   
lower case vowels are counted.

Examples: ….

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""

How many 
tests is enough?



Representative Tests

• We cannot test all possible inputs
§ “Infinite” possibilities (strings arbritrary length)
§ Even if finite, way too many to test

• Limit to tests that are representative
§ Each test is a significantly different input
§ Every possible input is similar to one chosen

• This is an art, not a science
§ If easy, no one would ever have bugs
§ Learn with much practice (and why teach early)



Representative Tests

Representative Tests for
number_vowels(w)

• Word with just one vowel
§ For each possible vowel!

• Word with multiple vowels
§ Of the same vowel
§ Of different vowels

• Word with only vowels
• Word with no vowels

Simplest 
case first!

A little 
complex

“Weird”
cases



How Many “Different” Tests Are Here?

INPUT OUTPUT
'hat' 1
'charm' 1
'bet' 1
'beet' 2
'beetle' 3

number_vowels(w)

A: 2
B: 3
C: 4
D: 5
E: I do not know

• If in doubt, just add more tests
• You are (rarely) penalized for too many tests

CORRECT(ISH)



The Rule of Numbers

• When testing the numbers are 1, 2, and 0
• Number 1: The simplest test possible

§ If a complex test fails, what was the problem?
§ Example: Word with just one vowels

• Number 2: Add more than was expected
§ Example: Multiple vowels (all ways)

• Number 0: Make something missing
§ Example: Words with no vowels



HOWEVER

• NEVER test a violation of precondition
§ Why?  You have no idea what happens
§ Unspecified means no guarantees at all
§ So you have no correct answer to compare

• Example: 'bcd' okay, but '12a' is bad.
• This can effect the rule of 1, 2, and 0

§ Precondition may disallow the rule
§ Example: a string with at least one value



Test Script: A Special Kind of Script

• Right now to test a function we do the following
§ Start the Python interactive shell
§ Import the module with the function
§ Call the function several times to see if it is okay

• But this is incredibly time consuming!
§ Have to quit Python if we change module
§ Have to retype everything each time

• What if we made a second Python module/script?
§ This module/script tests the first one



Test Script: A Special Kind of Script

• A test script is designed to test another module
§ It imports the other module (so it can access it)
§ It defines one or more test cases
§ It calls the function on each input
§ It compares the result to an expected output

• Doesn’t do much if everything is fine
• If wrong, it prints out helpful information

§ What was the case that failed?
§ What was the wrong answer given?



Testing with assert_equals

• Testing uses a special function:
def assert_equals(expected,received):

"""Quit program if expected, received differ"""
• Provided by the introcs module

§ Special module used for this course
§ Documentation is on course web page
§ Also contains useful string functions
§ And other functions beyond course scope



Running Example

• The following function has a bug:
def last_name_first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name> 
with one or more blanks between the two names"""
end_first = n.find(' ')
first = n[:end_first]
last  = n[end_first+1:]
return last+', '+first

• Representative Tests:
§ last_name_first('Walker White') give 'White, Walker'
§ last_name_first('Walker      White') gives 'White, Walker'

Look at precondition
when choosing tests



Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

# First test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

# Second test case
result = name.last_name_first('Walker            White')        
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')



Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

# First test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

# Second test case
result = name.last_name_first('Walker            White')        
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')

InputActual Output

Expected Output



Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

# First test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

# Second test case
result = name.last_name_first('Walker            White')        
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')
Message will print 

out only if no errors.

Quits Python
if not equal



Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

# First test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

# Second test case
result = name.last_name_first('Walker            White')        
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')

Finish example with 

number_of_vowels



Using Test Procedures

• In the real world, we have a lot of test cases
§ I wrote 20000+ test cases for a C++ game library
§ This is not all one function!
§ You need a way to cleanly organize them

• Idea: Put test cases inside another procedure
§ Each function tested gets its own procedure
§ Procedure has test cases for that function
§ Also some print statements (to verify tests work)



Running Example

• The following function has a bug:
def last_name_first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name> 
with one or more blanks between the two names"""
end_first = n.find(' ')
first = n[:end_first]
last  = n[end_first+1:]
return last+', '+first

• Representative Tests:
§ last_name_first('Walker White') give 'White, Walker'
§ last_name_first('Walker      White') gives 'White, Walker'

Look at precondition
when choosing tests



Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker            White')        
introcs.assert_equals('White, Walker', result)

# Execution of the testing code
test_last_name_first()
print('Module name is working correctly')

Actual file 
has 2 funcs



Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker            White')        
introcs.assert_equals('White, Walker', result)

# Execution of the testing code
test_last_name_first()
print('Module name is working correctly')

No tests happen 
if you forget this

Actual file 
has 2 funcs



Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker            White')        
introcs.assert_equals('White, Walker', result)

# Execution of the testing code
# test_last_name_first()
print('Module name is working correctly')

Can remove
to disable test

Actual file 
has 2 funcs



Testing last_name_first(n)

# test procedure
def test_last_name_first():

"""Test procedure for last_name_first(n)"""
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker            White')        
introcs.assert_equals('White, Walker', result)

# Script code
test_last_name_first()
print('Module name is working correctly')

Call function 
on test input

Compare to 
expected output

Call test procedure 
to activate the test



Types of Testing

Black Box Testing

• Function is “opaque”
§ Test looks at what it does
§ Fruitful: what it returns
§ Procedure: what changes

• Example: Unit tests
• Problems:

§ Are the tests everything?
§ What caused the error?

White Box Testing

• Function is “transparent”
§ Tests/debugging takes 

place inside of function
§ Focuses on where error is

• Example: Use of print
• Problems:

§ Much harder to do
§ Must remove when done



Types of Testing

Black Box Testing

• Function is “opaque”
§ Test looks at what it does
§ Fruitful: what it returns
§ Procedure: what changes

• Example: Unit tests
• Problems:

§ Are the tests everything?
§ What caused the error?

White Box Testing

• Function is “transparent”
§ Tests/debugging takes 

place inside of function
§ Focuses on where error is

• Example: Use of print
• Problems:

§ Much harder to do
§ Must remove when done

Works on 
functions you 
did not define

Can actually 
find the bug 
in function



Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""
end_first = n.find(' ')
print(end_first)
first = n[:end_first]
print(str(first))
last  = n[end_first+1:]
print(str(last))
return last+', '+first

Print variable after 
each assignment

Run Demo



How to Use the Results

• Goal of white box testing is error location
§ Want to identify the exact line with the error
§ Then you look real hard at line to find error
§ What you did in earlier assessment

• But similar approach to black box testing
§ At each line you have expected print result
§ Compare it to the received print result
§ Line before first mistake is likely the error



Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""
end_first = n.find(' ')
print(end_first)
first = n[:end_first]
print(str(first))
last  = n[end_first+1:]
print(str(last))
return last+', '+first

Do as little as 
possible on each 

line of code



Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""
end_first = n.find(' ')
print('space at '+end_first)
first = n[:end_first]
print('first is '+str(first))
last  = n[end_first+1:]
print('last is '+str(last))
return last+', '+first

Print variable after 
each assignment

Optional: Annotate 
value to make it 
easier to identify



Warning About Print Statements

• Must remove them when you are done
§ Not part of the specification (violation)
§ Slow everything down unnecessarily
§ App Store will reject an app with prints

• But you might want them again later
§ Solution: “comment them out”
§ Can uncomment later if need them


