Module 8

Testing

Basic Concepts

* Some important terms

* Bug: Error in a program. (Always expect them!)

* Debugging: Process of finding & removing bugs

= Testing: Process of analyzing & running a program
e Testing 1s a common way to search for bugs

= However, it 1s not the only way

= And it does not address how to remove them

* Good debugging starts with testing

Test Cases: Searching for Errors

* Testing 1s done with test cases
* An input, together with an expected output
* Input 1s the one (or more) argument(s)
= Qutput 1s what 1s returned

= Or what side-effect the procedure causes

o A list of test cases is testing plan

= Similar to what we did when reading specs

Testing Plan: A Case Study

def number_vowels(w):

Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o’, and 'u'. 'y' is a vowel if it is
not at the start of the word.

Repeated vowels are counted separately. Both upper case and
lower case vowels are counted.

Examples:

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters

Testing Plan: A Case Study

def number_vowels(w): INPUT OUTPUT

mnmn 'hat'

Returns: number of vowels , ,
heat

2
Vowels are defined to be 'a SKY' 1
not at the start of the wor: ‘year' 2

XXX 0)
Repeated vowels are counted separately. Both upper case and
lower case vowels are counted.

Examples:

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters

Recall: Workflow for this Course

S DN B W N =

. Import the module

. Write a procedure (function) in a module
. Open up the Terminal

. Move to the directory with this file

. Start Python (type python)

y e

. Call the procedure (function)

How to Test a Function

S b

Examine
test plan

All cases
are tested?

A

Run a
test case

Debug
function

<Finished>

How to Test a Function

S b

Examine All cases
test plan are tested?

-

.

Will cover in more detail
throughout this module

~

Debug
function

<Finished>

Testing Plan: A Case Study

def number_vowels(w):

Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o’, and 'u'. 'y' is a vowel if it is
not at the start of the word.

Repeated vowels are counted sep[)

lower case vowels are counted. HOW many

Examples: ... tests 1s enough?
_ /

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters

Representative Tests

* We cannot test all possible inputs
= “Infinite” possibilities (strings arbritrary length)
= Even 1if finite, way too many to test
e Limit to tests that are representative
= Each test 1s a significantly different input
= Every possible input is similar to one chosen
e This 18 an art, not a science

= If easy, no one would ever have bugs

= Learn with much practice (and why teach early)

Representative Tests

Representative Tests for
number_vowels(w)

Simplest
case first! Word with just one vowel
= For each possible vowel!
A little Word with multiple vowels
Complex = Of the same vowel

= Of different vowels
Word with only vowels
Word with no vowels

How Many “Different” Tests Are Here?

number_ vowels(w)

INPUT

'hat'
‘charm!
‘bet’
‘beet
'‘beetle’

e If in doubt, just add more tests

OUTPUT

1

1
1
2
3

A:?2
B:3
C: 4
D: 5
E: 1

CORRECT(ISH)

do not know

* You are (rarely) penalized for too many tests

The Rule of Numbers

* When testing the numbers are 1,2, and 0

* Number 1: The simplest test possible
= [f a complex test fails, what was the problem?
= Example: Word with just one vowels
* Number 2: Add more than was expected
= Example: Multiple vowels (all ways)
 Number 0: Make something missing

= Kxample: Words with no vowels

HOWEVER

* NEVER test a violation of precondition
* Why? You have no idea what happens

= Unspecified means no guarantees at all

= So you have no correct answer to compare
* Kxample: 'bed’ okay, but '12a' 1s bad.
 This can effect the rule of 1,2, and O

" Precondition may disallow the rule
= Example: a string with at least one value

Test Script: A Special Kind of Script

e Right now to test a function we do the following
= Start the Python interactive shell
* Import the module with the function
= Call the function several times to see if it 1s okay
e But this is incredibly time consuming!
= Have to quit Python if we change module
= Have to retype everything each time
* What if we made a second Python module/script?

= This module/script tests the first one

Test Script: A Special Kind of Script

e A test script 1s designed to test another module
= It imports the other module (so it can access it)
= Jt defines one or more test cases

= It calls the function on each input

= It compares the result to an expected output
* Doesn’t do much if everything is fine

* If wrong, it prints out helptul information

= What was the case that failed?
= What was the wrong answer given?

Testing with assert_equals

* Testing uses a special function:

def assert _equals(expected,received):
"MQuit program if expected, received differ"""

* Provided by the introcs module
= Special module used for this course
* Documentation 1s on course web page
= Also contains useful string functions

* And other functions beyond course scope

Running Example

e The following function has a bug:

def last _name first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names"""

end_first = n.find("' ")
first = n[:end_ first]

last = d_first+1: iti
ast = n[end_{first+1:] (Look at precondition J

return last+', '+first .
T when choosing tests

* Representative Tests: %

= Jast_name_first(‘Walker White") give 'White, Walker'
= Jast_name_first(‘Walker White') gives 'White, Walker'

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

First test case
result = name.last _name first(‘Walker White")

introcs.assert_equals(‘White, Walker', result)
Second test case
result = name.last_name_first('Walker White")

introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

Actual Output }
Fi case QM

result = name.last _name first(‘Walker White")

introcs.assert_equals(‘White, Walker', result)

Expected Output }

Second test case
result = name.last_name_first('Walker White")
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

First test case
result = name.last _name first('Walker White")

introcs.assert_equals('White, Walker', result) Quits Python
if not equal

Second test case
result = name.last _name first('Walker White")
introcs.assert_equals('White, Walker', result)

Message will print
print('Module name is working correctly') out only if no errors.

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

First test case \
result = nam .
introcs.asser FlﬁlSh exampl€ Wlth

Second test number__of_vowelsj

result = name.

introcs.assert_eq —Walker', result)

print('Module name is working correctly')

Using Test Procedures

e In the real world, we have a lot of test cases
= [wrote 20000+ test cases for a C++ game library
= This 1s not all one function!

* You need a way to cleanly organize them

* Idea: Put test cases inside another procedure

= Each function tested gets its own procedure
= Procedure has test cases for that function

= Also some print statements (to verify tests work)

Running Example

e The following function has a bug:

def last _name first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names"""

end_first = n.find("' ")
first = n[:end_ first]

last = d_first+1: iti
ast = n[end_{first+1:] (Look at precondition J

return last+', '+first .
T when choosing tests

* Representative Tests: %

= Jast_name_first(‘Walker White") give 'White, Walker'
= Jast_name_first(‘Walker White') gives 'White, Walker'

Test Procedure

def test_last _name_first():

""Tegt procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first(‘Walker White")
introcs.assert_equals(‘White, Walker', result)

introcs.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print('Module name is working correctly')

-

o

Actual file
has 2 funcs

~

/

result = name.last _name_first('Walker White")

Test Procedure

def test_last _name_first():

""Tegt procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)

introcs.assert_equals('White, Walker', result)

introcs.assert_equals(‘White, Walker', result) -
result = name.last_name_first('Walker White")

-

Actual file
has 2 funcs

~

/

Execution of the testiw No tests happen
test_last_name_first() -

if you forget this

print('"Module name is working correctly")

|

Test Procedure

def test_last _name_first():

""Tegt procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals(‘White, Walker', result)

introcs.assert_equals('White, Walker', result)

-

o

Actual file
has 2 funcs

~

/

result = name.last _name_first('Walker White")

Execution of the testing code Can remove
test_last _name first() to disable test

|

print('"Module name is working correctly")

Testing last_name_first(n)

test procedure Call function
def test_last_name_first(): on test input

""Tegt procedure for last_name_first(n)"""
result = name.last_name_first(‘Walker White') Compare to }

introcs.assert_equals('White, Walker', result) expected output
result = name.last _name first('Walker White")
introcs.assert_equals('White, Walker', result)
Seript cods Call te.:st procedure

, to activate the test
test_last _name_ first()
print('Module name is working correctly')

Types of Testing

Black Box Testing White Box Testing

* Function 1s “opaque” * Function is “transparent”

= Test looks at what i1t does = Tests/debugging takes

= Fruitful: what it returns place inside of function

= Procedure: what changes = Focuses on where error 1s
 Example: Unit tests * Example: Use of print
e Problems: * Problems:

= Are the tests everything? * Much harder to do

= What caused the error? = Must remove when done

Types of Testing

Black Box Testing White Box Testing
e Function 1s “opaque” * Function is “transparent”
B Tact lanl-c at what 1t does R S e T ’1*QS

g Works on [n

functions you piEE

O did not define

* Probliems:

= Are the tests everything? * Much harder to do
= What caused the error? = Must remove when done

Can actually
find the bug

D in function |a
* Propiems:

Or 1S

Finding the Error

e Unit tests cannot find the source of an error

e Idea: “Visualize” the program with print statements
def last_name_first(n):

"""Returns: copy of <n> in form <last>, <first>"""

end_first = n.find(' ") : :

print(end_first) ~ Print Var1?1ble after }
. each assignment

first = n[:end_first]

print(str(first))

last = n[end_first+1:]

print(str(last)) [Run Demo]

return last+', '+first

How to Use the Results

* Goal of white box testing 1s error location
* Want to identify the exact line with the error
" Then you look real hard at line to find error

* What you did in earlier assessment

e But similar approach to black box testing

= At each line you have expected print result
= Compare it to the received print result
" Line before first mistake 1s /ikely the error

Finding the Error

e Unit tests cannot find the source of an error

e Idea: “Visualize” the program with print statements
def last_name_first(n):

"""Returns: copy of <n> in form <last>, <first>""
end_first = n.find(')

print(end_first) Do as little as
first = n[:end_first] possible on each
print(ste(first)) line of code y
last = n[end_first+1:]

print(strdlast))

return last+', '+first

Finding the Error

e Unit tests cannot find the source of an error

e Idea: “Visualize” the program with print statements
def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""

end_first = n.find(") . .
print(‘space at '+end._first) % Print variable after }

‘ . each assignment
first = n[:end_first]

print(‘first is '+str(first)) Optional: e
last = n[end_first+1:] value to make it
print('last is "+str(last)) easier to 1dentity y

return last+', '+first

Warning About Print Statements

* Must remove them when you are done
= Not part of the specification (violation)
= Slow everything down unnecessarily

= App Store will reject an app with prints

* But you might want them again later
= Solution: “comment them out”

= Can uncomment later if need them

