
Testing

Module 8

Basic Concepts

• Some important terms
§ Bug: Error in a program. (Always expect them!)
§ Debugging: Process of finding & removing bugs
§ Testing: Process of analyzing & running a program

• Testing is a common way to search for bugs
§ However, it is not the only way
§ And it does not address how to remove them

• Good debugging starts with testing

Test Cases: Searching for Errors

• Testing is done with test cases
§ An input, together with an expected output
§ Input is the one (or more) argument(s)
§ Output is what is returned
§ Or what side-effect the procedure causes

• A list of test cases is testing plan
§ Similar to what we did when reading specs

Testing Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o', and 'u'. 'y' is a vowel if it is
not at the start of the word.

Repeated vowels are counted separately. Both upper case and
lower case vowels are counted.

Examples: ….

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""

Testing Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o', and 'u'. 'y' is a vowel if it is
not at the start of the word.

Repeated vowels are counted separately. Both upper case and
lower case vowels are counted.

Examples: ….

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""

INPUT OUTPUT
'hat' 1
'heat' 2
sky' 1
'year' 2
'xxx' 0

Recall: Workflow for this Course

1. Write a procedure (function) in a module

2. Open up the Terminal

3. Move to the directory with this file

4. Start Python (type python)

5. Import the module

6. Call the procedure (function)

Testing!

How to Test a Function

Start

Finished

Examine
test plan

Run a
test case

All cases
are tested?

Matched
expected?

Debug
function

Y
Y

N

N

How to Test a Function

Start

Finished

Examine
test plan

Run a
test case

All cases
are tested?

Matched
expected?

Debug
function

Y
Y

N

N

Will cover in more detail
throughout this module

Testing Plan: A Case Study

def number_vowels(w):
"""
Returns: number of vowels in string w.

Vowels are defined to be 'a','e','i','o', and 'u'. 'y' is a vowel if it is
not at the start of the word.

Repeated vowels are counted separately. Both upper case and
lower case vowels are counted.

Examples: ….

Parameter w: The text to check for vowels
Precondition: w string w/ at least one letter and only letters
"""

How many
tests is enough?

Representative Tests

• We cannot test all possible inputs
§ “Infinite” possibilities (strings arbritrary length)
§ Even if finite, way too many to test

• Limit to tests that are representative
§ Each test is a significantly different input
§ Every possible input is similar to one chosen

• This is an art, not a science
§ If easy, no one would ever have bugs
§ Learn with much practice (and why teach early)

Representative Tests

Representative Tests for
number_vowels(w)

• Word with just one vowel
§ For each possible vowel!

• Word with multiple vowels
§ Of the same vowel
§ Of different vowels

• Word with only vowels
• Word with no vowels

Simplest
case first!

A little
complex

“Weird”
cases

How Many “Different” Tests Are Here?

INPUT OUTPUT
'hat' 1
'charm' 1
'bet' 1
'beet' 2
'beetle' 3

number_vowels(w)

A: 2
B: 3
C: 4
D: 5
E: I do not know

• If in doubt, just add more tests
• You are (rarely) penalized for too many tests

CORRECT(ISH)

The Rule of Numbers

• When testing the numbers are 1, 2, and 0
• Number 1: The simplest test possible

§ If a complex test fails, what was the problem?
§ Example: Word with just one vowels

• Number 2: Add more than was expected
§ Example: Multiple vowels (all ways)

• Number 0: Make something missing
§ Example: Words with no vowels

HOWEVER

• NEVER test a violation of precondition
§ Why? You have no idea what happens
§ Unspecified means no guarantees at all
§ So you have no correct answer to compare

• Example: 'bcd' okay, but '12a' is bad.
• This can effect the rule of 1, 2, and 0

§ Precondition may disallow the rule
§ Example: a string with at least one value

Test Script: A Special Kind of Script

• Right now to test a function we do the following
§ Start the Python interactive shell
§ Import the module with the function
§ Call the function several times to see if it is okay

• But this is incredibly time consuming!
§ Have to quit Python if we change module
§ Have to retype everything each time

• What if we made a second Python module/script?
§ This module/script tests the first one

Test Script: A Special Kind of Script

• A test script is designed to test another module
§ It imports the other module (so it can access it)
§ It defines one or more test cases
§ It calls the function on each input
§ It compares the result to an expected output

• Doesn’t do much if everything is fine
• If wrong, it prints out helpful information

§ What was the case that failed?
§ What was the wrong answer given?

Testing with assert_equals

• Testing uses a special function:
def assert_equals(expected,received):

"""Quit program if expected, received differ"""
• Provided by the introcs module

§ Special module used for this course
§ Documentation is on course web page
§ Also contains useful string functions
§ And other functions beyond course scope

Running Example

• The following function has a bug:
def last_name_first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names"""
end_first = n.find(' ')
first = n[:end_first]
last = n[end_first+1:]
return last+', '+first

• Representative Tests:
§ last_name_first('Walker White') give 'White, Walker'
§ last_name_first('Walker White') gives 'White, Walker'

Look at precondition
when choosing tests

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

First test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Second test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

First test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Second test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')

InputActual Output

Expected Output

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

First test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Second test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')
Message will print

out only if no errors.

Quits Python
if not equal

Testing last_name_first(n)

import name # The module we want to test
import introcs # Includes the test procedures

First test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Second test case
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

print('Module name is working correctly')

Finish example with

number_of_vowels

Using Test Procedures

• In the real world, we have a lot of test cases
§ I wrote 20000+ test cases for a C++ game library
§ This is not all one function!
§ You need a way to cleanly organize them

• Idea: Put test cases inside another procedure
§ Each function tested gets its own procedure
§ Procedure has test cases for that function
§ Also some print statements (to verify tests work)

Running Example

• The following function has a bug:
def last_name_first(n):

"""Returns: copy of <n> but in the form <last-name>, <first-name>

Precondition: <n> is in the form <first-name> <last-name>
with one or more blanks between the two names"""
end_first = n.find(' ')
first = n[:end_first]
last = n[end_first+1:]
return last+', '+first

• Representative Tests:
§ last_name_first('Walker White') give 'White, Walker'
§ last_name_first('Walker White') gives 'White, Walker'

Look at precondition
when choosing tests

Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print('Module name is working correctly')

Actual file
has 2 funcs

Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print('Module name is working correctly')

No tests happen
if you forget this

Actual file
has 2 funcs

Test Procedure

def test_last_name_first():
"""Test procedure for last_name_first(n)""”
print('Testing function last_name_first')
result = name.last_name_first('Walker White’)
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Execution of the testing code
test_last_name_first()
print('Module name is working correctly')

Can remove
to disable test

Actual file
has 2 funcs

Testing last_name_first(n)

test procedure
def test_last_name_first():

"""Test procedure for last_name_first(n)"""
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)
result = name.last_name_first('Walker White')
introcs.assert_equals('White, Walker', result)

Script code
test_last_name_first()
print('Module name is working correctly')

Call function
on test input

Compare to
expected output

Call test procedure
to activate the test

Types of Testing

Black Box Testing

• Function is “opaque”
§ Test looks at what it does
§ Fruitful: what it returns
§ Procedure: what changes

• Example: Unit tests
• Problems:

§ Are the tests everything?
§ What caused the error?

White Box Testing

• Function is “transparent”
§ Tests/debugging takes

place inside of function
§ Focuses on where error is

• Example: Use of print
• Problems:

§ Much harder to do
§ Must remove when done

Types of Testing

Black Box Testing

• Function is “opaque”
§ Test looks at what it does
§ Fruitful: what it returns
§ Procedure: what changes

• Example: Unit tests
• Problems:

§ Are the tests everything?
§ What caused the error?

White Box Testing

• Function is “transparent”
§ Tests/debugging takes

place inside of function
§ Focuses on where error is

• Example: Use of print
• Problems:

§ Much harder to do
§ Must remove when done

Works on
functions you
did not define

Can actually
find the bug
in function

Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""
end_first = n.find(' ')
print(end_first)
first = n[:end_first]
print(str(first))
last = n[end_first+1:]
print(str(last))
return last+', '+first

Print variable after
each assignment

Run Demo

How to Use the Results

• Goal of white box testing is error location
§ Want to identify the exact line with the error
§ Then you look real hard at line to find error
§ What you did in earlier assessment

• But similar approach to black box testing
§ At each line you have expected print result
§ Compare it to the received print result
§ Line before first mistake is likely the error

Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""
end_first = n.find(' ')
print(end_first)
first = n[:end_first]
print(str(first))
last = n[end_first+1:]
print(str(last))
return last+', '+first

Do as little as
possible on each

line of code

Finding the Error

• Unit tests cannot find the source of an error
• Idea: “Visualize” the program with print statements

def last_name_first(n):
"""Returns: copy of <n> in form <last>, <first>"""
end_first = n.find(' ')
print('space at '+end_first)
first = n[:end_first]
print('first is '+str(first))
last = n[end_first+1:]
print('last is '+str(last))
return last+', '+first

Print variable after
each assignment

Optional: Annotate
value to make it
easier to identify

Warning About Print Statements

• Must remove them when you are done
§ Not part of the specification (violation)
§ Slow everything down unnecessarily
§ App Store will reject an app with prints

• But you might want them again later
§ Solution: “comment them out”
§ Can uncomment later if need them

