
Strings

Module 6

Advanced String
Expressions

An Interesting Problem

• Characters include punctuation ('Hello!')
• What if we want to put a quote in a string?

§ Example:
§ Problem: 'Don't' ????
§ Solution: "Don't"

• But double quote does not always work
§ Example:
§ Problem: "say "Hello"" ???
§ Solution: 'say "Hello"'

D o n ' t

D o n

s a y " H e l l o "

s a y

An Interesting Problem

• What if we combine the two?
§

§ Problem: "say "Don't"" ????
§ Problem: 'say "Don't"' ?
§ Solution: ????

• Actual solution is escape characters
§ Way to tell python that a (quote) character is in box
§ Do this with a backslash: \
§ Example: 'Don\'t'

s a y

s a y " D o n ' t "

s a y

" D o n

D o n ' t

Other Escape Characters

• What if want to include the backslash?
§ Example: '\' , error
§ Solution: '\\’
§ First \ is the escape, second is the character
§ Together they are an escape character

• There are many other examples
§ Often for formatting text
§ New lines, adding tabs
§ Visible with print functions

'

\

Char Meaning
\' single quote

\" double quote

\n new line

\t tab

\\ backslash

Print and Escape Characters

>>> print('Hello\nWorld')
Hello
World
>>> print('Hello\tWorld')
Hello World
>>> print('a\\b\\c')
a\b\c
>>> print('\\\\\\\\')
\\\\

print can help
you see the “boxes”

String Slicing

String are Indexed

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• s = 'Hello all'

• What is s[3:6]?

a b c d

0 1 2 3 4

H e l l o

0 1 2 3 4 5

a

6

l

7

l

8

A: 'lo a'
B: 'lo'
C: 'lo '
D: 'o '
E: I do not know

CORRECT

String are Indexed

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• s = 'a\\b\'c’

• Slicing shows “boxes”
§ s[1] is '\\'
§ s[3] is '\''

• These are one character!
§ len(s[1]) is 1, not 2
§ len(s[3]) is also 1
§ len(s) is 5, not 7

a b c d

0 1 2 3 4

a \ b ' c

0 1 2 3 4

Other Important Ideas

Negative Indices

>>> s = 'Hello all'
>>> s[-1]
'l'
>>> s[-3]
'a'
>>> s[1:-1]
'ello al'

Variables as Indices

>>> s = 'Hello all'
>>> x = 2
>>> y = 7
>>> s[x:y]
'llo a'
>>> s[x+2:y]
'o a'

String Methods

Strings Have Few Functions

• Strings have very few built-in functions
§ We have already seen len, print, (and input)
§ Not much else without going to modules

• That is because strings use methods instead
§ Method calls act a lot like function calls
§ They are just written somewhat differently

• Why methods and not functions?
§ We will see why later in the course

Strings Have Few Functions

• Strings have very few built-in functions
§ We have already seen len, print, (and input)
§ Not much else without going to modules

• That is because strings use methods instead
§ Method calls act a lot like function calls
§ They are just structured differently

• Why methods and not functions?
§ We will see why later in the course

Right now, only learning to
call methods, not define them

Function Calls vs Method Calls

Function Call

name(x)

Method Call

string.name()

method
name

argumentfunction
name

argument

Right now, assume
only one argument

Example: upper()

• upper(): Return an upper case copy
>>> s = 'Hello World’
>>> s.upper()
'HELLO WORLD'
>>> s[1:5].upper() # Str before need not be a variable
'ELLO'
>>> 'abc'.upper() # Str before could be a literal
'ABC’

• Notice that only argument is string in front

9/12/19 Strings 15

Alternative: Introcs

• The introcs module does have string functions
• In fact, it has a function form of upper

>>> import introcs
>>> s = 'Hello World’
>>> introcs.upper(s)
'HELLO WORLD'

• Idea: Alternative if you struggle with methods
§ But made for a very different type of course
§ In this course, we should learn methods

Advanced String
Methods

String Methods

• In a previous video we saw method calls
string.name()

• Example: 'Hello'.upper()
• But it only has a single argument

§ Functions could have multiple arguments
§ Can methods have additional arguments too?

method
name

argument

Additional Arguments

• Additional arguments go inside of parentheses

string.name(x,y,…)

• But first argument (string) is always in front

method
name

additional
arguments

argument

Examples of String Methods

• s1.index(s2)
§ Returns position of the
first instance of s2 in s1

• s1.count(s2)
§ Returns number of times

s2 appears inside of s1

• s.strip()
§ Returns copy of s with no

white-space at ends

>>> s = 'abracadabra'
>>> s.index('a')
0
>>> s.index('rac')
2
>>> s.count('a')
5
>>> s.count('x')
0
>>> ' a b '.strip()
'a b'

9/12/19 Strings 20

Examples of String Methods

• s1.index(s2)
§ Returns position of the
first instance of s2 in s1

• s1.count(s2)
§ Returns number of times

s2 appears inside of s1

• s.strip()
§ Returns copy of s with no

white-space at ends

>>> s = 'abracadabra'
>>> s.index('a')
0
>>> s.index('rac')
2
>>> s.count('a')
5
>>> s.count('x')
0
>>> ' a b '.strip()
'a b'

9/12/19 Strings 21

See Lecture page for more

Example: upper()

>>> s = 'Hello World’
>>> s.upper()
'HELLO WORLD’
>>> s[1:5].upper()
'ELLO’
>>> 'abc'.upper()
'ABC'

Replaces
introcs.upper()

Example: count

• Format: s1.count(s2)
§ Number of times s2 appears inside of s1
§ The string you search for is in parentheses!

• Examples:
§ s = 'abbac'
§ s.count('a') == 2
§ s.count('c') == 1
§ s.count('x') == 0
§ s.count('ab') == 1

Example: index

• Format: s1.index(s2)
§ Position of the first instance of s2 in s1
§ Same argument order as count_str

• Examples:
§ s = 'abbac'
§ s.index('c') == 4
§ s.index('a') == 0
§ s.index('x') CRASHES
§ s.index('ab') == 0

find is a
kinder variant

Where To Learn About String Methods?

In the documentation!

String Processing

A Word Problem

• Suppose you are given a variable s
§ You are not told what is inside of it
§ You only know that it is a string

• Told to find the middle third of string
§ You can only use function and methods
§ Again, no idea what is inside of the string

• What you do has to work for any string
§ s = 'abc', answer 'b'
§ s = 'abcdef', answer is 'cd'

Implement this Function

def middle(text):
"""Returns: middle 3rd of text
Position, size rounded down
Precondition: text is a string"""

• Functions that
§ Take string as argument
§ Produce some value

• 1st interesting functions
§ Focus of Assignment 1Fill this in

String Processing

What Can We Do With Strings

• We can slice strings (s[a:b])
• We can glue together strings (+)
• We can use string methods

§ We can search for characters
§ We can count the number of characters
§ We can pad strings
§ We can strip padding

• Sometimes, we can cast to a new type

What Can We Do With Strings

• We can slice strings (s[a:b])
• We can glue together strings (+)
• We can use string methods

§ We can search for characters
§ We can count the number of characters
§ We can pad strings
§ We can strip padding

• Sometimes, we can cast to a new type

These will be our
building blocks

Getting Started

• The first step is always the hardest
§ Most students unsure of where to start
§ Will have another video series on this

• Idea: Why not work in reverse?
§ Specification tells you what to return
§ Figure the operation you need to get there
§ Make a variable if unsure about a step
§ Assign that variable on previous line

Example: Getting the Middle Third

def middle(text):
"""Returns: middle 3rd of text
Position and size are rounded down
Precondition: text is a string"""

Return the final answer
return result

Example: Getting the Middle Third

def middle(text):
"""Returns: middle 3rd of text
Position and size are rounded down
Precondition: text is a string"""

Cut out the final answer
result = text[start:end]
return result

Example: Getting the Middle Third

def middle(text):
"""Returns: middle 3rd of text
Position and size are rounded down
Precondition: text is a string"""

Get the end of the middle third
end = 2*size//3
result = text[start:end]
return result

Example: Getting the Middle Third

def middle(text):
"""Returns: middle 3rd of text
Position and size are rounded down
Precondition: text is a string"""

Get the start of the middle third
start = size//3
end = 2*size//3
result = text[start:end]
return result

Example: Getting the Middle Third

def middle(text):
"""Returns: middle 3rd of text
Position and size are rounded down
Precondition: text is a string"""
Get the size of the text
size = len(text)
start = size//3
end = 2*size//3
result = text[start:end]
return result

Testing the Result

def middle(text):
"""Returns: middle 3rd of text
Precond: text is a string"""

Get length of text
size = len(text)
Start of middle third
start = size//3
End of middle third
end = 2*size//3
Get the text
result = text[start:end]
Return the result
return result

>>> middle('abc')
'b'
>>> middle('aabbcc')
'bb'
>>> middle('aaabbbccc')
'bbb'

