
User-Defined Functions

Module 5

Purpose of this Video

• Series Goal: Create your own functions
§ Not same as designing (a larger course goal)
§ Focusing on technical details of writing code

• But need to introduce a lot of terminology
§ If you do not know cannot follow lectures
§ Will have a glossary on the course web page

• Will also standardize some terminology
§ People use words in slightly different ways

Basic Terminology

• Assume familiarity with a function call
§ May not remember the exact term
§ The name for using a function in python
§ Example: round(26.54)

• Arguments are expressions in parentheses
§ Example: round(26.54) has one argument
§ Example: round(26.54,1) has two arguments

Procedures vs. Functions

• Most functions are expressions
§ The call evaluates to a value
§ Can nest or use in an assignment statement
§ Example: x = round(26.54) puts 2.7 in x

• But some functions are statements
§ Example: print('Hello') by itself
§ Example: x = print('Hello') makes x empty

• Latter type of functions are called procedures
§ All procedures are function, reverse not true

Fruitful Functions

• What to call functions that are not procedures?
§ Historically they were called functions
§ So functions and procedures distinct
§ But the C language called both types functions
§ Python kept this terminology

• We will use the term fruitful function
§ Because the function is producing a value
§ Taken from Allen Downey’ Think Python

Procedure Definitions

• Goal: Learn to write a function definition
§ You know how to call a function
§ Python does something when you call it
§ How does it know what to do?

• Built-in functions have definitions, but hidden
• In this video, we will focus on procedures

§ Procedures are the easier of the two types
§ But most of what we say applies to all

Anatomy of a Procedure Definition

def greet(n):
"""Prints a greeting to the name n

Precondition: n is a string
representing a person’s name"""
text = 'Hello '+n+'!'
print(text)

Function Header

Function Body

Anatomy of the Body

def greet(n):
"""Prints a greeting to the name n

Precondition: n is a string
representing a person’s name"""
text = 'Hello '+n+'!'
print(text)

Docstring
Specification

Statements
to execute

Anatomy of the Header

def greet(n):
"""Prints a greeting to the name n

Precondition: n is a string
representing a person’s name"""
text = 'Hello '+n+'!'
print(text)

name parameter(s)

• Parameter: variable listed within the parentheses of a header

• Need one parameter per argument you expect

keyword

Anatomy of the Header

def greet(n):
"""Prints a greeting to the name n

Precondition: n is a string
representing a person’s name"""
text = 'Hello '+n+'!'
print(text)

name parameter(s)

• Parameter: variable listed within the parentheses of a header

• Need one parameter per argument you expect

keyword
greet('Walker')

Function Call:

One argument

When You Call a Procedure

• Calling a procedure does the following
§ It evaluates each argument
§ It plugs each value in the relevant parameter
§ It executes each statement in the body

• DEMO: Copy from file into prompt
>>> greet('Walker')
'Hello Walker!'

When You Call a Procedure

• Calling a procedure does the following
§ It evaluates each argument
§ It plugs each value in the relevant parameter
§ It executes each statement in the body

• DEMO: Copy from file into prompt
>>> greet('Walker')
'Hello Walker!'

Must enter procedure definition

before you call the procedure

Parameter vs. Local Variables

def greet(n):
"""Prints a greeting to the name n

Precondition: n is a string
representing a person’s name"""
text = 'Hello '+n+'!’
print(text)

parameter(s)

• Parameter: variable listed within the parentheses of a header

• Local Variable: variable first assigned in function body

local
variable

Last aside

Modules: Python Files

• Recall: module is a file with Python code
§ Typically ends in .py
§ Edited with a code editor
§ Will use Atom Editor for my videos

• You use a module by importing it
§ Executes the statements in the file
§ You can access any variables in that file
§ DEMO: File with a single variable

Modules Contain Function Definitions

• Modules also allow you to access functions
§ Should be familiar with basic Python modules
§ Example: math and math.cos
§ Those modules have function definitions

• Importing causes Python to read definition
§ You can then call the procedure
§ But must follow the standard import rules

• DEMO: procedure.greet('Walker')

A Good Workflow to Use

1. Write a procedure (function) in a module

2. Open up the Terminal

3. Move to the directory with this file

4. Start Python (type python)

5. Import the module

6. Call the procedure (function)

Recall: Fruitful Function vs. Procedure

• Procedure: Function call is a statement
§ Example: print('Hello')

• Fruitful Function: Call is expression
§ Example: round(2.64)

• Definitions are (almost) exactly the same
§ Only difference is a minor change to body
§ Fruitfuls have a new type of statement
§ This is the return statement

The return Statement

• Format: return <expression>
§ Used to evaluate function call (as expression)
§ Also stops executing the function!
§ Any statements after a return are ignored

• Example: temperature converter function
def to_centigrade(x):

"""Returns: x converted to centigrade"""
return 5*(x-32)/9.0

Combining Return with Other Statements

def plus(n):
"""Returns the number n+1

Parameter n: number to add to
Precondition: n is a number"""

x = n+1
return x

Math Analogy:
• On a math exam, do your work and circle final answer.
• Return is same idea as indicating your final answer

Creates variable x w/ answer

Makes value of x the result

Combining Return with Other Statements

def plus(n):
"""Returns the number n+1

Parameter n: number to add to
Precondition: n is a number"""

x = n+1
return x

Math Analogy:
• On a math exam, do your work and circle final answer.
• Return is same idea as indicating your final answer

Creates variable x w/ answer

Makes value of x the result

Return should
be placed last!

Print vs. Return

Print

• Displays value on screen
§ Useful for testing
§ Not for calculations

def print_plus(n):
print(n+1)

>>> x = print_plus(2)
3
>>>

Return

• Defines function’s value
§ Needed for calculations
§ But does not display

def return_plus(n):
return (n+1)

>>> x = return_plus(2)
>>>

x 3xNothing

Visualization

• You must to learn to think like Python does
§ Else you and Python will miscommunicate
§ Like a coworker with language/cultural issues
§ Good programmers see from Python’s persp.

• Need to build visual models of Python
§ You imagine what Python is doing invisibly
§ Not exactly accurate; more like metaphores
§ We call this skill visualization

A Motivating Example

Function Definition

8. def plus(n):
9. """Returns n+1"""
10. x = n+1
11. return x

Function Call

>>> x = 2
>>> y = plus(4)

global var

local var

A Motivating Example

Function Definition

8. def plus(n):
9. """Returns n+1"""
10. x = n+1
11. return x

Function Call

>>> x = 2
>>> y = plus(4)

>>> x = 2
Global Space

global var

local var
Visualization

2x

A Motivating Example

Function Definition

8. def plus(n):
9. """Returns n+1"""
10. x = n+1
11. return x

Function Call

>>> x = 2
>>> y = plus(4)

?x

What is in the box?

A: 2
B: 4
C: 5

A Motivating Example

Function Definition

8. def plus(n):
9. """Returns n+1"""
10. x = n+1
11. return x

Function Call

>>> x = 2
>>> y = plus(4)

?x

What is in the box?

A: 2 Correct
B: 4
C: 5

• Statement to execute next
• References a line number

Variables
(named boxes)

Understanding How Functions Work

• Call Frame: Representation of function call
• A conceptual model of Python

function name

local variables

parameters

instruction counter

When You Call a Function It…

• Creates a new call frame

• Evaluates the arguments

• Creates a variable for each parameter

• Stores the argument in each parameter

• Puts counter at first line after specification
(or first of body if no specification)

An Example

Function Definition

8. def plus(n):
9. """Returns n+1"""
10. x = n+1
11. return x

Function Call

• y = plus(4)

plus 10

next line
to execute

4n

Next: Execute the Body Until the End

• Process one line of code at a time
§ Each time you read a line redraw the frame
§ Not a new frame; the frame is changing
§ Think of it as “animating” the frame

• How to process each type of statement:
§ Print: Nothing (on screen, not frame)
§ Assignment: Put variable in frame
§ Return: create a special “RETURN” variable

• Move the instruction counter forward

An Example

Function Definition

8. def plus(n):
9. """Returns n+1"""
10. x = n+1
11. return x

Function Call

• y = plus(4)

plus 10

4n

An Example

Function Definition

8. def plus(n):
9. """Returns n+1"""
10. x = n+1
11. return x

Function Call

• y = plus(4)

plus 11

4n 5x

An Example

Function Definition

8. def plus(n):
9. """Returns n+1"""
10. x = n+1
11. return x

???

Function Call

• y = plus(4)

plus

4n 5x

5RETURN

Nothing

When You are Done

• Look if there is a RETURN variable
§ Might not be if a procedure
§ If so, remember that

• Erase the frame entirely
§ All variables inside of frame are deleted
§ Including the RETURN

• Function call turns into a value (RETURN)
§ Use that in the calling statement

An Example

Function Definition

8. def plus(n):
9. """Returns n+1"""
10. x = n+1
11. return x

???

Function Call

• y = plus(4)

plus

4n 5x

5RETURN

An Example

Function Definition

8. def plus(n):
9. """Returns n+1"""
10. x = n+1
11. return x

Function Call

• y = plus(4)
???

5y

ERASE WHOLE FRAME

Global Space

Variables here
are not erased

2x

The Python Tutor

Definition

Global Assignment

Function Call

First Step of Visualization

Ready to
Process

Definition

Processing the Global Assignment

Global
Space

Starting The Function Call

Global
Space

Call Frame

Starting The Function Call

Missing line
numbers!

Line number
marked here

(sort-of)

Executing the Function Call

Special
variable

Erasing the Frame

As soon as
frame erased

Working With Tabs

• You can use tabs to simulate modules
§ Put function definition in one tab
§ Import and call in another

• But visualizer will not show frame
§ Can only show a call frame if in same tab
§ This is a limitation of visualizer
§ Under hood, call frame still made

• DEMO: Split up code from last example

