Module 3

Function Calls

Function Calls

e Python supports expressions with math-like functions

= A function in an expression is a function call
* Function calls have the form

name(x.,y,...)

/N

function argument
name

= Arguments are themselves expressions

= Arguments are separated by commas

Built-In Functions

* Python has several math functions

u round(2.54) Arguments can be }

any expression
= max(a+3,24)

* You have seen many functions already
= Type casting functions: int(), float(), bool()

e Documentation of all of these are online
" https://docs.python.org/S/library/functions.html

= Most of these are two advanced for us right now

https://docs.python.org/3/library/functions.html

Functions as Commands/Statements

* Most functions are expressions.
" You can use them 1n assignment statements
= Example: X = round(2.34)

* But some functions are commands.

= They instruct Python to do something

. ™
= Help function: help() These take no
" Quit function: quitQ) drguments

e How know which one? Read documentation.

Case Study: String Functions

e String processing 1s a major feature of Python
= Easier than in many other languages

= Will be the focus of first major assignment

* Also highlights the flexibility of functions

= Many string functions are expressions

= But some of the most important are commands

* Let’s examine three important functions

Function len

 Used as an expression

= Value is # of chars in s

= Evaluates to an int

 Examples:
= 5 = "Hello'
= len(s) ==
= len(‘all") ==

= len(s+'all’) ==

{

Used in many
expressions

-

Function print

e Used as a command

= Displays arguments on screen

 Examples:

Hello")
This 1s not a value!

= x = print('Hello") 1s None
= print('Hello\nWorld")

= print(
Hello

Hello
World

%

Translates special
characters

J

-

-

print should be
called by itself, not
In an expression

~

/

One Last Function: input

>>> input('Type something')

Type somethingabc Like print but it
'abc’ waits for typing

>>> input('Type something: ')

Type something: abc Evaluates to
'abe! what 1s typed

>>> x = input('Type something: ")

Type something: abc Can assign
>>>X its value

'abc'

One Last Function: input

>>> input('Type something")
Type somethingabc Like print but itw

I&bcl xx1n1to Fae txreman o~
>>> input(’ .

Type somet Will see the purpose
abe function of this later

>>> X = Inp\

Type something: abc T sl
>>>X its value

'abc'

Built-in Functions vs Modules

e The number of built-in functions 1s small

" http://docs.python.org/3/library/functions.html

* Missing a lot of functions you would expect
= Example: cos(), sqrt()
* Module: file that contains Python code

= A way for Python to provide optional functions

= To access a module, the import command

http://docs.python.org/2/library/functions.html

Example: Module math

>>> import math { To access math }

functions
>>> ¢0s(0)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'cos' is not defined

>>> math.cos(0) Functions
10 require. math

prefix!
>>> math.pi

Module has
3.14159265385897938 | variables too!

>>> math.cos(math.pi)
-1.0

Example: Module math

>>> import math{ 1o access math } Other Modules
functions
>>> ¢08(0)
Traceback (most recent call last): e io
File "<stdin>", line 1, in <module> = Read/write from files

NameError: name 'cos' is not defined ¢ random

>>> math.cos(0) Functions = Generate random numbers
1.0 require math = (Can pick any distribution
:) prefix! e string
>>> math.pi
P Module has = Useful string functions
4.1415926586897938 | variables too! -
[

>>> math.cos(math.pi)
-1.0

= Information about your OS

Reading Documentation

* Being able to read docs 1s an important skill
= It 1s impossible for you to memorize everything
* If you need something, expected to look 1t up
e Reason why programmers have large monitors
* Can have documentation open at all times
= Does not get in the way of programming
* But reading documentation requires training

* Information laid out in a very specific way

= May not be obvious to a beginner

Reading the Python Documentation

000® < in) 3) * @ Python Software 1ation docs.python.org/3/library/math.html A A M G (3]

Gaming v News v Researchv Commentary v Ncomments Financial v Travel v Shopping v Technical v TroubleShooting v Developer v BBQv Misc v

9.2. math — Mathematical functions — Python 3.6.2 documentation -

Python» Engish [362 [J Documentation » The Python Standard Library » 9. Numeric and Mathematical Modules » \Go | | previous | next | modules | index

Table Of Contents 9.2. math — Mathematical functions

9.2. math — Mathematical

functions
* 9.2.1. Number- : n 3 i 5 2

theoretic and This module is always available. It provides access to the mathematical functions defined by the C standard.

representation

functions These functions cannot be used with complex numbers; use the functions of the same name from the cmath module if you require support for com-
= 9.2.2. Power and plex numbers. The distinction between functions which support complex numbers and those which don’t is made since most users do not want to

logarithmic functions learn quite as much mathematics as required to understand complex numbers. Receiving an exception instead of a complex result allows earlier de-

tection of the unexpected complex number used as a parameter, so that the programmer can determine how and why it was generated in the first

9.2.3. Trigonometric

functions
place.
* 9.2.4. Angular
;°;';'::°" i The following functions are provided by this module. Except when explicitly noted otherwise, all return values are floats.
= 9.2.5. Hyperbolic
functions . & H
+ 9.2.6. Special functions 9.2.1. Number-theoretic and representation functions

9.2.7. Constants

math. ceil(x)
Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to x.__ceil__ (), which should return an
Integral value.

Previous topic

9.1. numbers — Numeric
abstract base classes

math. copysign(x, y)

Next topic
0.3 cuatn — Mathematical. B Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros, copysign(1.0, -0.0) returns
functions for complex -1.0.
numbers
math. fabs(x)
This Page Return the absolute value of x.
Report a Bug
Show Source math. factorial(x)

Return x factorial. Raises valueError if x is not integral or is negative.

math. £loor(x)
Return the floor of x, the largest integer less than or equal If xis n fl hi hould return an Integral

value.

— http://docs.python.org/library

Return £mod(x, y), as defined by the platform C library. No

C standard is that fmod(x, y) be exactly (mathematically; tO TG DTCCISION) COUAT 0 X = N7y 07 SOTNE TMtCger /T Such tnat e resar nas e
same sign as x and magnitude less than abs(y). Python's x % y returns a result with the sign of y instead, and may not be exactly computable for
float arguments. For example, fmod(-1e-100, 1e100) is -le-100, but the result of Python's -1e-100 % 1e100 is 1e100-1e-100, which cannot be

http://docs.python.org/library

Reading the Python Documentation

200 < i8] g . - t docs.python.org/3/library/math.html o A A ? 4]

Gaming v News v Researchv Commentary v Ncomments Financial v Travel v Shopping v Technical v TroubleShooting v Developer v BBQv Misc v

9.2. math — Mathematical functions — Python 3.6.2 documentation

Python» Engish [362 EJ Documentation » The Python Standard Library » 9. Numeric and Mathematical Modules » Go | | previous | next | modules | index

Table Of Contents
— Math

9.2. math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

Function
name

These functions cannot be used with complex numbers; use the functions of the same name from the cmath module if you require support for com-
plex numbers. The distinction between functions which support complex numbers and those which don’t is made since most users do not want to
learn quite as much mathematics as required to understand complex numbers. Receiving an exception instead of a complex result allows earlier de-

tection of the unexpected complex number used as a parameter, so that the programmer can determine how and why it was generated in the first
place.

":’“°" S memmmmmm noted otherwise, all return values are floats.

The followi

math. cel

N :
i1(x) __ Possible arguments

A Return the ceiling of x, the smallest integer greater than or equal to x.
AN

TYEXT tOPTC

float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed zeros, copysign(1.0, -0.0) returns

Module
ge

for complex
Report a Bug
Show Source

What the function evaluates to

€

S not integral or IS neg:
math. £loor(x)

Return the floor of x, the largest integer less than or equal to x_If xis not a float,_delegates to x. _floor (). which should return an zntegral
value.

— http://docs.python.org/library

Return fmod(x, y), as defined by the platform C library. No|

C standard is that fmod(x, y) be exactly (mathematically; tO TG DTCCISION) COUAT 0 X = N7y 07 SOTNE TMtCger /T Such tnat e resar nas e
same sign as x and magnitude less than abs(y). Python's x % y returns a result with the sign of y instead, and may not be exactly computable for
L float arguments. For example, fmod(-1e-100, 1e100) is -le-100, but the result of Python's -1e-100 % 1e100 is 1e100-1e-100, which cannot be

http://docs.python.org/library

Alternative: help()

>>> import math help can take
>>> help(math) an argument

Help on module math:

NAME Always available, but
math not as searchable
FUNCTIONS
acos(...)
acos(x)

Return the arc cosine (measured in radians) of x.

: Hit space to
page through

Using the from Keyword

>>> import math >>> from math import *
Must prefix with
>>> math.pi module name | >>> ¢08(0)
3.141592653589793 1.0
>>> from math import pi >>> gin(0)
. No prefix needed
>>> Pl 41 for variable pi } 0.0 :
No prefix needed
3.141592653589793 for anything in math

>>> ¢08(pi)

ERROR\[ONLY imported pi J

Be careful using from!

e Using import 1s safer
" Modules might conflict (functions w/ same name)

* What if import both?

 Example: numpy

= Has cos, sin too
* Why? Performance (scientific computing)

= But not always installed!

Renaming

>>> import math as m

>>> m.cos(0) Can rename
10 a module

>>> from math import cos as fred

>>> fred(0) Can rename
1.0 a function

Nested Modules

. ™
>>> import introcs.strings Importing introcs

imports all modules
that it contains)

>>> introcs.strings.strip(' abe ')

‘abc’

>>> from introcs import strings

>>> gtrings.strip(‘ abe ")

‘abc’

>>> from introcs.strings import strip
>>> gtrip(* abc ')

