
Dyanmic Typing

Module 22

What is Typing?

• We know what a (Python) type is
§ All values in Python have a type
§ Typing: act of finding the type of a value
§ Example: type(x) == int

• Commonly used in preconditions
§ Definition assumes certain operations
§ If operations are missing, def may crash
§ So we use assert to check for operations

class Fraction(object):
"""Instances are normal fractions n/d"""
INSTANCE ATTRIBUTES
_numerator: int
_denominator: int > 0

class BinaryFraction(Fraction):
"""Instances are fractions k/2n """
INSTANCE ATTRIBUTES same but
_denominator: int = 2n, n ≥ 0

def __init__(self,k,n):
"""Make fraction k/2n """
assert type(n) == int and n >= 0
super().__init__(k,2 ** n)

>>> p = Fraction(1,2)
>>> q = BinaryFraction(1,2) # 1/4

>>> r = p*q

>>> r = p.__mul__(q) # ERROR

Python
converts to

__mul__ has precondition
type(q) == Fraction

A Problem with Subclasses

What Happened Here?

• Our typing precondition is too strict
§ Only allow Fractions, not subclasses
§ But subclasses still make sense!

• Recall:Why put types in preconditions?
§ To guarantee that we have a set of operations
§ But subclasses inherit all operations!

• In this video series, we will revisit typing
§ Act of checking the (current) type of a variable
§ How do we adapt this to handle subclasses?

Fixing Multiplication

class Fraction(object):
"""Instances are fractions n/d"""
_numerator: int
_denominator: int > 0

def __mul__(self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
q is Fraction or a subclass
top = self.numerator*q.numerator
bot = self.denominator*q.denominator
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = BinaryFraction(1,2) # 1/4

>>> r = p*q

>>> r = p.__mul__(q) # OKAY

Python
converts to

Can multiply so long as it
has numerator, denominator

The isinstance Function

• isinstance(<obj>,<class>)
§ True if <obj>’s class is same

as or a subclass of <class>
§ False otherwise

• Example:
§ isinstance(e,Executive) is True
§ isinstance(e,Employee) is True
§ isinstance(e,object) is True
§ isinstance(e,str) is False

• Generally preferable to type
§ Works with base types too!

e id4

id4
Executive

_salary 0.0

_start 2012

_name 'Fred'

_bonus 0.0

object

Employee

Executive

isinstance and Subclasses

>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???

A: True
B: False
C: Error
D: I don’t know

e id5

id5
Employee

_salary 50k

_start 2012

_name 'Bob'

object

Employee

Executive

isinstance and Subclasses

>>> e = Employee('Bob',2011)
>>> isinstance(e,Executive)
???

A: True
B: False
C: Error
D: I don’t know

object

Executive

Employee

→ means “extends”
or “is an instance of”

Correct

Fixing Multiplication

class Fraction(object):
"""Instances are fractions n/d"""
_numerator: int
_denominator: int > 0

def __mul__(self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
assert isinstance(q, Fraction)
top = self.numerator*q.numerator
bot = self.denominator*q.denominator
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = BinaryFraction(1,2) # 1/4

>>> r = p*q

>>> r = p.__mul__(q) # OKAY

Python
converts to

Can multiply so long as it
has numerator, denominator

Accessing Attributes

• Typing guarantees certain attributes exists
§ RGB object? It has red, green, and blue
§ Point3 object? It has x, y, and z

• What if you are unsure an attribute exists?
§ Is there a way to ask Python?
§ …other than crashing inside of a try-except

• Remember that all objects are dictionaries
§ (or at least are backed by dictionaries)
§ We can use this to our advantage

Accessing Attributes with Strings

• hasattr(<obj>,<name>)
§ Checks if attribute exists

• getattr(<obj>,<name>)
§ Reads contents of attribute

• delattr(<obj>,<name>)
§ Deletes the given attribute

• setattr(<obj>,<name>,<val>)
§ Sets the attribute value

• <obj>.__dict__
§ List all attributes of object

id1

2.0

3.0

5.0

Point3

x

y

z

id2

2.0

3.0

5.0

dict

'x'

'y'

'z'

Treat object
like dictionary

Why Is This Useful?

• This is useful in interactive scripts
§ User types in an attribute to access
§ That value is a string
§ Can now turn that string into attribute!

• Demo: dynamic.py
• Used in very advanced applications

§ A way to separate responsibilities
§ User does not need to know all attributes
§ Can write code filling in with strings later

Why Is This Useful?

• This is useful in interactive scripts
§ User types in an attribute to access
§ That value is a string
§ Can now turn that string into attribute!

• Demo: dynamic.py
• Used in very advanced applications

§ A way to separate responsibilities
§ User does not need to know all attributes
§ Can write code filling in with strings later

Far beyond scope of this course

Typing Philosophy in Python

• Duck Typing:
§ “Type” object is determined

by its methods and properties
§ Not the same as type() value
§ Preferred by Python experts

• Implement with hasattr()
§ hasattr(<object>,<string>)
§ Returns true if object has an

attribute/method of that name
• This has many problems

§ The name tells you nothing
about its specification

class Fraction(object):
"""Instances are fractions n/d"""
numerator: int
denominator: int > 0
…
def __eq__(self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if type(q) != Fraction:

return False
left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

Typing Philosophy in Python

• Duck Typing:
§ “Type” object is determined

by its methods and properties
§ Not the same as type() value
§ Preferred by Python experts

• Implement with hasattr()
§ hasattr(<object>,<string>)
§ Returns true if object has an

attribute/method of that name
• This has many problems

§ The name tells you nothing
about its specification

class Fraction(object):
"""Instances are fractions n/d"""
numerator: int
denominator: int > 0
…
def __eq__(self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if (not (hasattr(q,'numerator') and

hasattr(q,'denomenator')):
return False

left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

Typing Philosophy in Python

• Duck Typing:
§ “Type” object is determined

by its methods and properties
§ Not the same as type() value
§ Preferred by Python experts

• Implement with hasattr()
§ hasattr(<object>,<string>)
§ Returns true if object has an

attribute/method of that name
• This has many problems

§ The name tells you nothing
about its specification

class Fraction(object):
"""Instances are fractions n/d"""
numerator: int
denominator: int > 0
…
def __eq__(self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if (not (hasattr(q,'numerator') and

hasattr(q,'denomenator')):
return False

left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

Compares anything with
numerator & denominator

Final Word on Typing

• How to implement/use typing is controversial
§ Major focus in designing new languages
§ Some langs have no types; others complex types

• Trade-of between ease-of-use and robustness
§ Complex types allow automated bug finding
§ But make they also make code harder to write

• What we really care about is specifications
§ Duck Typing: we think the value meets a spec
§ Types guarantee that a specification is met

