Module 23

Abstraction

Case Study: Fractions

e Want to add a new type class Fraction(object):
"""Tnstance is a fraction n/d""

INSTANCE ATTRIBUTES:
numerator: an int

= Values are fractions: ¥, 34
= (Operations are standard
multiply, divide, etc.

= Example: 4*3% =34 # _denominator: an int > 0

e Can do this with a class def _init_ (selfn=0.d=1):
= Values are fraction objects "Tnit: makes a Fraction™"
= (Operations are methods self._numerator = n

* Example: fracl.py self._denominator = d

Case Study: Fractions

e Want to add a new type class Fraction(object):

= Values are fractions: %, % ""Instance is a fraction n/d"™
Over! # INSTANCE ATTRIBUTES:
= Oper) .
muliy Reminder: Hide % numerator: an int
. Exan attributes, use # _denominator: an int > 0
getters/setters
* Cando_ | def __init_ (self,n=0,d=1):
= Values are fraction objects " Tnit: makes a Fraction™"
= (Operations are methods self._numerator = n
* Example: fracl.py self._denominator = d

Problem: Doing Math is Unwieldy

What We Want

What We Get

(

1 1 1

> t373

)

5
k —

4

>>>p = Fraction(1,)
>>> q = Fraction(1,3)
>>> p = Fraction(1,4)
>>> g = Fraction(5,4)
>>> (p.add(q.add(r))).mult(s)

{ﬁsisconfusing! }

Problem: Doing Math is Unwieldy

What We Want What We Get
1 | 1 1\ 5 >>>p = Fraction(1,2)
(2 ' 3 T Z) * 4 >>> (= Fraction(1,3)
>>> p = Fraction(1,4)
4 A >>> g = Fraction(b,4
Why not use the 8 = Fraction(s,4)
standard Python >>> (p.add(q.add(r))).mult(s)

"

math operations?

/

{ﬁsisconfusing! }

Abstraction

e Goal: Hide unimportant details from user
= Replace unfamiliar with the familiar
= Focus on the core functionality of the type
* Data encapsulation 1s one part of it
= Hide direct access to the attributes
= Only allow getters and setters
e But also involves operator overloading

= Replace method calls with operators
= Make class feel like a built-in type

Operator Overloading

* Many operators in Python a special symbols
=+ - /. % ** for mathematics
" ==_|= < > for comparisons

* The meaning of these symbols depends on type
= 1 +2 vs'Hello' + "World
=] <2 vs 'Hello' <'World'

e Our new type might want to use these symbols

" We overload them to support our new type

Special Methods in Python

* Have seen three so far class Point3(object):

. C el 1 """Instances are points in 8D space""
0 init _ for initializer

= gtr for str()

def __init__(self,x=0,y=0,z=0):

0 repr for repr
—Tepr__ prO) ""Tnitializer: makes new Point3"""

o Start/end with 2 underscores

= This is standard in Python
def __str__ (self,q):

" Used in all special methods """Returns: string with contents""”

= Also for special attributes

* We can overload operators def _ repr_ (self,q):

"""Returns: unambiguous string""”

= (Give new meaning to +, *, -

Returning to Fractions

What We Want Operator Overloading
(1 1 1) 5 Python has methods that
— _l_ —_— _I_ —] x — T4
> "' 37 4) 4 correspond to built-in ops
= _ add__ corresponds to +
= mul corresponds to *
a O X
Why not use the "= _ eq corresponds to ==
= Not impl ted by default
standard Python O TIPTEMEEa by et
: 0 e To overload operators you
math operations: implement these methods

"

/

Operator Overloading: Multiplication

class Fraction(object):
"""Instance is a fraction n/d"""
numerator: an int

_denominator: an int >0

def __mul__ (self,q):

""Returns: Product of self, q

Makes a new Fraction; does not

modify contents of self or q
Precondition: q a Fraction"""

assert type(q) == Fraction

top= self._numerator*q._numerator
bot= self._denominator*q._denominator
return Fraction(top,bot)

>>>p = Fraction(1,R)
>>> q = Fraction(3,4)
>>>p =Dp*Q

Python

N /converts to

>>>p=p.__mul_ (@

Operator overloading uses
method in object on left.

Operator Overloading: Addition

class Fraction(object):
"""Instance is a fraction n/d""”
numerator: an int

_denominator: an int >0

def __add__(self,q):

"""Returns: Sum of self, q

Makes a new Fraction

Precondition: q a Fraction"""

assert type(q) == Fraction

bot= self._denominator*q._denominator

top= (self._numerator*q._denominator+
self._denominator*q._numerator)

return Fraction(top,bot)

>>>p = Fraction(1,R)
>>> q = Fraction(3,4)
>>> P = p+(q

Python

N /converts to

>>>p=p.__add__ (g

Operator overloading uses
method in object on left.

Comparing Objects for Equality

e Earlier in course, we saw == class Fraction(object):
compare object contents ""Instance is a fraction n/d""

.. # numerator: an int
= This is not the default

= Default: folder names

denominator: anint >0

e Must implement __eq def __eq_ (self,):
"""Returns: True if self, q equal,
False if not, or q not a Fraction"""
if type(q) != Fraction:
return False
= Ex: cross multiplying left = self._numerator*q._denominator
4 9 2, 4 rght = self._denominator*q._numerator

N <——

2 4 return left == rght

= Operator overloading!

= Not limited to simple
attribute comparison

is Versus ==

e pis qevaluates to False

= Compares folder names

= Cannot change this

p

id2

id2

Always use (x is None) not (x == None)

Point

2.2

5.4

6.7

e p == (evaluates to True

= But only because method

__eq __ compares contents

q | id3

id3

Point

2.2

5.4

6.7

Recall: Overloading Multiplication

class Fraction(object):
"""Instance is a fraction n/d"""
numerator: an int

_denominator: an int >0

def __mul__ (self,q):
""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: g a Fraction""

l assert type(q) == Fraction I

top = self._numerator*q._numerator

bot= self._denominator*q._denominator
return Fraction(top,bot)

>>>p = Fraction(1,R)
>>>(q =2 # an int
>>>p =Dp*Q

Python

N /converts to

>>>p=p.__mul_ (q) # ERROR

Can only multiply fractions.
But ints “make sense” too.

Solution: Look at Argument Type

* QOverloading use left type class Fraction(object):

= p*q=>p.__mul_ (Q def __mul (self,q):

* Done for us automatically """Returns: Product of self, q
Precondition: q a Fraction or int"™

. if type(q) == Fraction:
* What about type on l'lght? return self._mulFrac(q)

= Have to handle ourselves elif type(q) == int:
return self._mullnt(q)

= [Looks in class definition

e Can implement with ifs

= Write helper for each type def _mullnt(self,q): # Hidden method

= Check type in method return Fraction(self._numerator*q,
self._denominator)

= Send to appropriate helper

A Better Multiplication

class Fraction(object):

def __mul__(self,q):
"""Returns: Product of self, q
Precondition: g a Fraction or int"""
if type(q) == Fraction:

return self._mulFrac(q)
elif type(q) == int:

return self._mullnt(q)

def _mullnt(self,q): # Hidden method
return Fraction(self._numerator*q,
self._denominator)

>>>p = Fraction(1,R)
>>>(q =2 # an int
>>>p =Dp*Q

Python

N /converts to

>>>p=p.__mul_ (q) # OK!

See frac3.py for a full
example of this method

What Do We Get This Time?

class Fraction(object): >>>p = Fraction(1,R)

e |
def _mul__(self,q): g=R #anint

"""Returns: Product of self, g >>>71 = Q"]
Precondition: q a Fraction or int"""
if type(q) == Fraction:
return self._mulFrac(q) A: FPaCtiOD(Z,Z)
elf type() == Int: B: Fraction(1,1)
return self._mullnt(q) .
C: Fraction(2,4)
def _mullnt(self,q): # Hidden method D: Error
return Fraction(self._numerator*q, E: I don’t know

self. denominator)

What Do We Get This Time?

class Fraction(object): >>>p = Fraction(1,R)

e |
def _mul__(self,q): g=R #anint

"""Returns: Product of self, q >>>p=Q*p
Precondition: q a Fraction or int"™
if type(q) == Fraction:

Meaning determined by left.

return self._mulFrac(q) Variable q stores an int.
elif type(q) == int:

return self._mullnt(q)

C: Fraction(!,4)
def _mulInt(self,q): # Hidden method D: Error CORRECT

return Fraction(self._numerator*q, E: 1 dOIl’t kIlOW
self._denominator)

The Python Data Model

Note: Slicing is done exclusively with the following three methods. A call like
a[l:2] = b

i translarlito http://docs.python.org/3/reference/datamodel .html

a[slice(l, 2, None)] = b

and so forth. Missing slice items are always filled in with None.

object.__getitem__ (self, key)

Called to implement evaluation of self[key]. For sequence types, the accepted keys should be integers and slice objects. Note that the special in-
terpretation of negative indexes (if the class wishes to emulate a sequence type) is up to the _ getitem () method. If key is of an inappropriate
type, TypeError may be raised; if of a value outside the set of indexes for the sequence (after any special interpretation of negative values),
IndexError should be raised. For mapping types, if key is missing (not in the container), KeyError should be raised.

Note: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of the end of the sequence.

object. _missing __ (self, key)
Called by dict. getitem () toimplement self[key] for dict subclasses when key is not in the dictionary.

object.__setitem__ (self, key, value)

Called to implement assignment to self[key]. Same note as for _ getitem (). This should only be implemented for mappings if the objects
support changes to the values for keys, or if new keys can be added, or for sequences if elements can be replaced. The same exceptions should be
raised for improper key values as for the getitem () method.

object.__delitem__ (self, key)

Called to implement deletion of self[key]. Same note as for getitem (). This should only be implemented for mappings if the objects support
removal of keys, or for sequences if elements can be removed from the sequence. The same exceptions should be raised for improper key values as
for the getitem () method.

http://docs.python.org/3/reference/datamodel.html

We Have Come Full Circle

* On the first day, saw that a type 1s both
= a set of values, and

" the operations on them

* In Python, all values are objects
= Everything has a folder in the heap
= Just ignore it for immutable, basic types
* In Python, all operations are methods
= Each operator has a double-underscore helper
= Looks at type of object on left to process

Structure of a Proper Python Class

class Fraction(object): (Docstring describing class
"""Instance is a fraction n/d"" — Attributes are all hidden

numerator: an int

denominator: anint >0

def getNumerator(self): —
‘ "Returns: Numerator of Fraction™" L Getters and Setters.
def __init_ (self,n=0,d=1): -)

Initializer for the class.
Defaults for parameters.

N J
>

~

‘ """Tnitializer: makes a Fraction"""

def __add__(self,q):
\ """Returns: Sum of self, g"""

Python operator overloading

G J

~

def normalize(self): 4 o
L Normal method definitions

‘ """Puts Fraction in reduced form""")

Class Methods

Normal Method Class Method
Definition: Definition:
@classmethod
def add(self,other): def isname(cls,n):

"""Return sum of self, other"""

Call; other
>>>p.add(q)

self

"""Return True if cls named n"""

Call: cls o
>>> Pointd.isname('Point3")

Using Class Methods

* Primary purpose 1s for custom constructors
* Want method to make a custom object
= But do not have an object (yet) for method call

= Call using the class in front instead of object

e Custom constructors rely on normal constructor

= They just compute the correct attrib values
= But call the constructor using c¢ls variable

= Using cls(...) as constructor makes subclass safe

Advanced

Content
Warning

Properties: Invisible Setters and Getters

class Fraction(object):
"""Instance is a fraction n/d"""
numerator: an int

_denominator: an int >0
@property

def numerator(self):

"""Numerator value of Fraction
Invariant: must be an int""

return self. numerator

@numerator.setter

def numerator(self,value):
assert type(value) == int
self._numerator = value

>>>p = Fraction(1,2)
>>> X = p.numerator

Python

< ; converts to

>>> x = p.numerator()

>>> p.numerator = 2

Python

< ; converts to

>>> p.numerator(R)

Properties: Invisible Setters and Getters

class Fraction(object):
"""Instance is a fraction n/d"""
numerator: an int

Decorator specifies that next
method is getter for property
of the same name as method

denominator: anint >0
@property
def numerator(self):

""Numerator value of Fraction <[Docstring describing property }

Invariant: must be an int""

return|self._numerator 4] .
L Property uses hidden attribute.

@numerator.setter

def numerator(self,value):
assert type(value) == int

Decorator specifies that next
method is the setter for property

self._numerator = value whose name is numerator.

Properties: Invisible Setters and Getters

class Fraction(object): e ~
"Instance is a fraction n/d"" Goal: Data Encapsulation
_numerator: an int Protecting your data from
_denominator: anint >0 other, “clumsy” users.
@property \ ~

def numerator(self):
""Numerator value of Fraction Only the getter is required! }

Invariant: must be an int""

return self. numerator

If no setter, then the
attribute 1s “immutable”.

Replace Attributes w/ Properties
(Users cannot tell difference)

