Module 22

Subclasses &
Inheritance

An Application

* Goal: Presentation program (e.g. PowerPoint)
* Problem: There are many types of content

= Examples: text box, rectangle, 1mage, etc.

= Have to write code to display each one

* Solution: Use object oriented features
= Define class for every type of content
= Make sure each has a draw method:

for x in slide[i].contents:
| x.draw(window)

11/5/19 Subclasses & Inheritance

Sharing Work

e These classes will have a lot in common

* Drawing handles for selection
= Background and foreground color
= Current size and position

* And more (see the formatting bar in PowerPoint)

* Result: A lot of repetitive code

e Solution: Create one class with shared code

= All content are subclasses of the parent class

11/5/19 Subclasses & Inheritance

£ Abbreviate } Defining a Subclass

as SC to right
L Superclass
class SlideContent(object): Parent class SlideContent
"""Any object on a slide.""" Base class
def _ init_ (self, x, y, w, h): ...
def draw_frame(self): ... Subclass
def select(self): ... Child class Bemsex

Derived class

class TextBox(SlideContent):
"""An object containing text."""
def __init_ (self, x, y, text): ...
def draw(self): ...

class Image(SlideContent):
"""An image."""
def _ init_ (self, x, y, image_file): ..
def draw(self): ...

11/5/19 Subclasses & Inheritance

Image

Class Definition: Revisited

class <name>(<superclass>):

Class specification Class type to extend

getters and setters (may need module name)

initializer (__init_)

* Every class must
extend something

e Previous classes all

L extended object

definition of operators

definition of methods

/

anything else

11/5/19 Subclasses & Inheritance

object and the Subclass Hierarcy

e Subclassing creates a Kivy Example

hierarchy of classes

= Each class has its own object

super class or parent kivy.uix.widge.WidgetBase

= Until object at the “top”
, Kivy.uix.widget.Widget
* object has many features

= Special built-in fields: kivy.uix.label.Label

_class__,_ diet__ kivy.uix.buttonfButton
= Special built-in methods:
str__,__ repr__ Module Class

11/5/19 Subclasses & Inheritance

object and the Subclass Hierarcy

* Subclassing creates a I ple
hierarchy of classes built-in class
object %

= Each class has its own

super class or parent kiW.uiX.Widge.Wid@super class }
= Until object at the “top” '

Kivy.uix.widget.Widget

* object has many features

= Special built-in fields: kivy.uix.label.Label —=ar o

_ class__, _ dict__ kivy.uix.buttonfButton] g

= Special built-in methods:
str__,__ repr__ Module Class

11/5/19 Subclasses & Inheritance 7

Name Resolution Revisited

e To look up attribute/method name
I. Look first in instance (object folder)
2. Then look in the class (folder)

e Subclasses add two more rules:

3. Look in the superclass

4. Repeat 3. until reach object

id3

TextBox

p| id3

> text| Hi

11/5/19 Subclasses & Inheritance

Name Resolution Revisited

e To look up attribute/method name

I. Look first in instance (object folder)
2. Then look in the class (folder)

e Subclasses add two more rules:

3. Look in the superclass

4. Repeat 3. until reach object

p| id3

11/5/19

id3

text

Subclasses & Inheritance

p.text

TextBox

'Hi!'

‘ p.select() \

‘ p.draw() \

Name Resolution Revisited

e To look up attribute/method name

I. Look first in instance (object folder)

TextBox

p | id3 > text| Hil

11/5/19 Subclasses & Inheritance 10

Also Works With Class Attributes

Class Attribute: Assigned outside of any method definition

class Employee(object):
"""Instance is salaried worker"""
Class Attribute

STD_SALARY = 50000.0

class Executive(Employee): 50000.0

"""An Employee with a bonus.""”
Class Attribute

STD_BONUS = 10000.0
10000.0

11/5/19 Subclasses & Inheritance

11

A Simpler Example

class Employee(object):
"""Tnstance is salaried worker"""
INSTANCE ATTRIBUTES:

_name: full name, a string
_start: first year hired,
anint >-1, -1 if unknown

_salary: yearly wage, a float

class Executive(Employee):
"""An Employee with a bonus"""
INSTANCE ATTRIBUTES:

bonus: annual bonus, a float

11/5/19 Subclasses & Inheritance

12

A Simpler Example

class Employee(object):
"""Tnstance is salaried worker"""
INSTANCE ATTRIBUTES:

_name: full name, a string
_start: first year hired,
anint >-1, -1 if unknown

_salary: yearly wage, a float

class Executive(Employee):
"""An Employee with a bonus"""
INSTANCE ATTRIBUTES:

bonus: annual bonus, a float

11/5/19 Subclasses & Inheritance

All double

underscore
methods are
in class object

13

Method Overriding

e Which str do we use?
= Start at bottom class folder

= Find first method with name
= Use that definition

e New method definitions
override those of parent
= Access to old version is lost
= New version used instead

= Example: __init_

11/5/19 Subclasses & Inheritance

Accessing the “Previous’ Method

* What if you want to use the
original version method?
= New method = original+more

= Do not want to repeat code
from the original version

e Use the function super()
= “Converts” type to parent class
= Now methods go to the class
 Example:
super().__str__ ()

In Python 2
self goes here
11/5/19 Subclasses & Inheritance

15

Accessing the “Previous’ Method

e What if you want to use the class Employee(object):

R . . IIIIIIA E 1 'th 1 mnin
original version method? 1 BIPTOyee WA 6 Salaty
= New method = original+more ;ef str (sel)
= Do not want to repeat code return (self._name +
from the original version ' year '+ str(self._start) +

e Use the function super() , salary ' + str(self._salary))

= “Converts” type to parent class class Executive(Employee)

= Now methods go to the class " An Employee with a bonus."™"
 Example:

def _ str_ (self):
return (super().__str__ O
self is implied } + ' bonus ' + str(self._bonus))

super(). _str O

11/5/19 Subclasses & Inheritance 16

What is super()?

* Like object with class “removed”
= Still gives a reference to self ‘
= But bottom-up rule skips first class ‘ p.select() \

* But cannot use it everywhere | p.draw(|

* Only allowed in method definitions

SlideContent /
id3 / [pdrewO |
17

11/5/19 Subclasses & Inheritance

What is super()?

 super() 1s very limited * Need arguments for more
= Can only go one level = super(class,self)
" BAD: super().super() What class Object in
, to skip over the method
p| id2
id2
Exec

Empl object

_ste. O — 5 _str_ O

S

11/5/19 Subclasses & Inheritance 18

p.__str_ O

What is super()?

 super() 1s very limited * Need arguments for more
= Can only go one level = super(class,self)
" BAD: super().super() What class Object in
, to skip over the method
p| id2
id2
Exec

Empl object

_ste. O — 5 _str_ O

S

11/5/19 Subclasses & Inheritance 19

p.__str_ O

What is super()?

 super() 1s very limited * Need arguments for more
= Can only go one level = super(class,self)
" BAD: super().super() What class Object in
, to skip over the method
p| id2
id2

super(Exec,self).__str_ (O

Exec

S

11/5/19 Subclasses & Inheritance 20

Empl object

_ste. O — 5 _str_ O

p.__str_ O super().__str__ (O

What is super()?

 super() 1s very limited * Need arguments for more
= Can only go one level = super(class,self)
" BAD: super().super() What class Object in
, to skip over the method
p| id2
id2

super(Exec,self).__str_ (O

Exec

S

11/5/19 Subclasses & Inheritance 21

Empl object

_ste. O — 5 _str_ O

p.__str_ O super().__str__ () super(Empl,self).__str_ ()

Primary Application: Initializers

class Employee(object):

def __init__ (self,n,d,s=50000.0):
self._name=n

self._start =d

self._salary = s

class Executive(Employee):

def __init__ (self,n,d,b=0.0):
super().__init__ (n,d)
self._bonus =b

11/5/19 Subclasses & Inheritance

Instance Attributes are (Often) Inherited

class Employee(object):

self. name =n
self. start =d
self._salary = s

def __init__ (self,n,d,s=50000.0):

class Executive(Employee):

super().__init__ (n,d)
self. bonus=b

def __init__ (self,n,d,b=0.0):

11/5/19

Subclasses & Inheritance

id4

Executive
"Tred’ Created n
Employee
2012 initializer
50000.0
0.0
Created in
Executive
initializer

23

