Module 19

Dictionaries

Key-Value Pairs

* Introducing last new type: dictionary (or dict)
= One of the most important in all of Python
= Like a list, but built of key-value pairs
e Keys: Unique identifiers
* Think social security number
= At Cornell we have netids: jrsi
* Values: Non-unique Python values
= John Smith (class ’13) 1s jrs1

Idea: Lookup
= John Smith (class ’16) is jrs2 values by keys

Basic Syntax

e Create with format: {kl:vl, k2:v2, ...}

= Both keys and values must exist

= Ex: d={'jrsl"'dJohn',’jrsd"'John', wmwg'.'Walker'}
e Keys must be non-mutable

" ints, floats, bools, strings, tuples

= Not lists or custom objects

= Changing a key’s contents hurts lookup

* Values can be anything

Using Dictionaries (Type dict)

e Access elts. like a list
" d['jrsl'] evals to 'John’
" d['jrs?'] does too
" d['wmw?'] evals to 'Walker'

= d['abcl'] 1s an error
e Can test if a key exists

" Yjrsl’ in d evals to True
= ‘gbcl'in d evals to False

d = {jsl"'John','jsk"'John’

'wmwa':'Walker'}

id8

jrsl’
irsd’

'wmwa'

d| id8

dict

'John'

'John'

'Walker'

e But cannot slice ranges! [

Key-Value order in
folder 1s not important

]

Dictionaries Can be Modified

e Can reassign values
d = {Yjrsl"'John',)jrsR":'John’,

= dlrsl] = 'Jane’
[jrs1'] = 'Jane 'wmw2':'Walker')

= Very similar to lists

e Can add new keys 48 d| id8
" d[*aaal'] = 'Allen’ dict
= Do not think of order jesl' | 'Jane'

e Can delete keys jrs@' | 'John
= del d['wmw?2’] ik | Walker

‘aaal’ 'Allen'

= Deletes both key, value
* Change: delete + add

Dictionaries are Represented as Folders

e Need because mutable! d= {'jsl"'John','js"'John',

* Values in variables
= Keys are off to left
* Looks like objects
= Esp. 1if string keys
= But note the quotes

= Cannot access with dot

e More flexible type

'wmwg':'Walker'}
d| idS8
id8
dict
jrsl’ 'John'
'irs’ 'John'
'wmwd' | 'Walker'

|

Key-Value order in
folder 1s not important

]

Dicts vs Objects

id2 id2
dict RGB
red | 255 red 255
'Sreen’| 128 green | 128
'blue' 0 blue 0
e (Can add new variables e Variables fixed (sort-of)
* Does not check bounds e Possibly checks bounds

of the content variables of the content variables

Dicts vs Objects

id2
RGB
red’ 255
'green’ 128
'blue’ 0
e (Can add new variables e Variables fixed (sort-of)
* Does not check bounds e Possibly checks bounds

of the content variables of the content variables

Nesting Dictionaries

 Remember, values can be anything
= Only restrictions are on the keys

e Values can be lists (Visualizer)
=d={"a"[1,R], 'D"[3,4]}

e Values can be other dicts (Visualizer)
= d={a"{'c:1,d:2}, 'b:{'e"3, 4}

e Access rules similar to nested lists
= Kxample: d['a']['d'] = 10

Example: JSON File

{

¥

B

TR Nested
wind" : { o
"speed” : 13.0, Dictionary

"crosswind" : 5.0

) }’,, Nested
sky? e List
{

"cover" : "clouds",

"type" : "broken",
"height" : 1200.0

"type" : "overcast",
"height" : 1800.0

Nested

Dictionary J

10/5/18

* JSON: File w/ Python dict

= Actually, minor differences

* weather.json:

= Weather measurements
at Ithaca Airport (2017)

= Keys: Times (Each hour)
= Values: Weather readings

e This 1s a nested JISON

= Values are also dictionaries
= Containing more dictionaries

" And also containing lists

Nested Lists 10

Dictionaries: Iterable, but not Sliceable

e Can loop over a dict for k in d:
Loops over keys

print(k) # key
print(d[k]) # value

= Only gives you the keys

= Use key to access value

e Can 1terate over values # To loop over values only

= Method: d.values() for v in d.values():

= But no way to get key ’ print(v) ~ # value

= Values are not unique

Other Iterator Methods

« Keys: d.keys(for k in d.keysQ):
= No different normal loop # Loops over keys
= But good for extraction print(k) # key
= keys = list(d keys()) print(d[k]) # value
e [tems: d.items() for pair in d.itemsQ):
= Returns key-value pairs print(pair[0]) # key
= Elements are tuples print(pair[1]) # value

= Specialized uses

Relationship to Standard Lists

e Functions on dictionaries similar to lists
= Go over dictionary (keys) with for-loop
= Use accumulator to gather the results

* Only difference 1s how to access value
= Remember, loop variable 1s keys

= Use keys to access the values

= But otherwise the same

Simple Example

def max_grade(grades):
"""Returns max grade in the grade dictionary

Precondition: grades has netids as keys, ints as values™"
maximum =0 # Accumulator
Loop over keys
for k in grades:
if grades[k] > maximum:
’ maximum = grades[k]

return maximum

Another Example

def netids_above_cutoff(grades,cutoff):
"""Returns list of netids with grades above or equal cutoff

Precondition: grades has netids as keys, ints as values.
cutoff is an int."""
result =[] # Accumulator

for k in grades:
if grades[k] >= cutoff:
’ result.append(k) # Add key to the list result

return result

Relationship to Standard Lists

e Restrictions are different than list

= Okay to loop over dictionary to change

" You are looping over keys, not values
" Like looping over positions

* But you may not add or remove keys!
* Any attempt to do this will fail

= Have to create a key list if you want to do

A Subtle Difference

Globals Objects

d = {1:2} global dict

— for k in d.keys(): d|e——— 12
d[k+1] = d[k]+1

k 1
23
g
Frames
<< First <Back Program terminated
RuntimeError: dictionary changed size during iteration
Globals Objects
d = {1:2} global dict

for k in list(d.keys()):
d[k+1] = d[k]+1

d | &——. 12
k 1
8l 3

Frames
<< First <Back Program terminated

line that has just executed
==) next line to execute

But This is Okay

def give_extra_credit(grades,netids,bonus):
""Gives bonus points to everyone in sequence netids

Precondition: grades has netids as keys, ints as values.
netids is a sequence of strings that are keys in grades
bonus is an int."""

No accumulator. This is a procedure

Could also loop }
for student in grades: 4\(DB LA

if student in netids: # Test if student gets a bonus

’ grades[student] = grades[student]+bonus

Keyword Expansion

» Last use of dicts 1s an advanced topic
= But will see if read Python code online

= Variation of tuple variation

* An Observation:
* Functions can be called with assignments
= These assign parameters to specific variables

= Can we do this with a single argument: a dictionary?

* Purpose of keyword expansion: **kw

= But only works in certain contexts

Tuple Expansion Example

>>> def add(X, y)

4 R

"""Returns x+y """ Have to use in

return x+y function call
o« o e . /
>>>q = {'x1,7"3}
>>> add(**d) # Assigns to variable with name
S
>>>d = {x"1,'y"%,'z:8} # Cannot have extra “variables”
>>> add(**d) # Can only have less if optional

ERROR

Also Works in Function Definition

def area_of_rectangle(**kw):

0

"""Returns the area of the specified rectang

Parameters: left, right, width, center, bott
Precondtion: parameters all int or float. (

Compute the width of the rectangle
width = None
if 'left' in kw and 'right' in kw:
width = kw['right']-kw['left']
elif 'width' in kw:
width = kw['width']
elif 'center' in kw:
if 'left' in kw:
width = 2*(kw['center']-kw['left'])
elif 'right' in kw:
width = 2*(kw['right']-kw['center'])
assert width != None, 'There were not enougt

Compute the height of the rectangle

<< First <Back Step50f31 Forward > Last >>

Globals Objects

global
area_of_rectangle
Frames

area_of_rectangle
" /——>

width | None

function
area_of_rectangle(**kw)

dict
"left" 2
"bottom" 1
"right" 5
"top" 7

Also Works in Function Definition

def area_of_rectangle(* *kw): Automatically converts all
""Returns the area of the specified rectangle| arguments to a dictionary

Params: left,right,width,center,bottom,top,height,middle
Prec: params all int or float. Can compute width, height"""
width = None

if 'left' in kw and 'right' in kw:
’ width = kw['right']-kw['left']
elif 'width' in kw: .
- width = kw['width' for the height
elif 'center' in kw:

if 'left' in kw:

’ width = 2*(kw['center']-kw(['left'])

elif 'right' in kw:

‘ width = &*(kw['right'T-kw['center'])

And similarly

When is This Useful?

* When have a lot of optional arguments

= GUI libraries infamous for this: TKinter, Kivy
= Have to specity lots of details for each widget

= Where located, color, size, and so on

* Also when want flexibility (like example)

