
Dictionaries

Module 19

Key-Value Pairs

• Introducing last new type: dictionary (or dict)
§ One of the most important in all of Python
§ Like a list, but built of key-value pairs

• Keys: Unique identifiers
§ Think social security number
§ At Cornell we have netids: jrs1

• Values: Non-unique Python values
§ John Smith (class ’13) is jrs1
§ John Smith (class ’16) is jrs2

Idea: Lookup
values by keys

Basic Syntax

• Create with format: {k1:v1, k2:v2, …}
§ Both keys and values must exist
§ Ex: d={‘jrs1':'John',’jrs2':'John','wmw2':'Walker'}

• Keys must be non-mutable
§ ints, floats, bools, strings, tuples
§ Not lists or custom objects
§ Changing a key’s contents hurts lookup

• Values can be anything

Using Dictionaries (Type dict)

• Access elts. like a list
§ d['jrs1'] evals to 'John’
§ d['jrs2'] does too
§ d['wmw2'] evals to 'Walker'
§ d['abc1'] is an error

• Can test if a key exists
§ 'jrs1’ in d evals to True
§ 'abc1' in d evals to False

• But cannot slice ranges!

d = {'js1':'John','js2':'John',
'wmw2':'Walker'}

'wmw2'

id8

'John'

'John'

'Walker'

dict

'jrs2'

'jrs1'

Key-Value order in
folder is not important

id8d

Dictionaries Can be Modified

• Can reassign values
§ d['jrs1'] = 'Jane’
§ Very similar to lists

• Can add new keys
§ d[‘aaa1'] = 'Allen’
§ Do not think of order

• Can delete keys
§ del d['wmw2’]
§ Deletes both key, value
§ Change: delete + add

d = {'jrs1':'John','jrs2':'John',
'wmw2':'Walker'}

'wmw2'

id8

'Jane'

'John'

'Walker'

dict

'jrs2'

'jrs1'

'aaa1' 'Allen'
✗ ✗

id8d

Dictionaries are Represented as Folders

• Need because mutable!
§ Values in variables
§ Keys are off to left

• Looks like objects
§ Esp. if string keys
§ But note the quotes
§ Cannot access with dot

• More flexible type

d = {'js1':'John','js2':'John',
'wmw2':'Walker'}

'wmw2'

id8

'John'

'John'

'Walker'

dict

'jrs2'

'jrs1'

Key-Value order in
folder is not important

id8d

Dicts vs Objects

• Can add new variables
• Does not check bounds

of the content variables

• Variables fixed (sort-of)
• Possibly checks bounds

of the content variables

id2

'red' 255

'green' 128

'blue' 0

dict
id2

red 255

green 128

blue 0

RGB

Dicts vs Objects

• Can add new variables
• Does not check bounds

of the content variables

• Variables fixed (sort-of)
• Possibly checks bounds

of the content variables

id2

'red' 255

'green' 128

'blue' 0

dict
id2

red 255

green 128

blue 0

RGB

Objects designed

for safety reasons

Nesting Dictionaries

• Remember, values can be anything
§ Only restrictions are on the keys

• Values can be lists (Visualizer)
§ d = {'a':[1,2], 'b':[3,4]}

• Values can be other dicts (Visualizer)
§ d = {'a':{'c':1,'d':2}, 'b':{'e':3,'f':4}}

• Access rules similar to nested lists
§ Example: d['a']['d'] = 10

Example: JSON File
{

"wind" : {
"speed" : 13.0,
"crosswind" : 5.0
},

"sky" : [
{

"cover" : "clouds",
"type" : "broken",
"height" : 1200.0

},
{

"type" : "overcast",
"height" : 1800.0

}
]

}

• JSON: File w/ Python dict
§ Actually, minor differences

• weather.json:
§ Weather measurements

at Ithaca Airport (2017)
§ Keys: Times (Each hour)
§ Values: Weather readings

• This is a nested JSON
§ Values are also dictionaries
§ Containing more dictionaries
§ And also containing lists

10/5/18 Nested Lists 10

Nested
Dictionary

Nested
List

Nested
Dictionary

Dictionaries: Iterable, but not Sliceable

• Can loop over a dict
§ Only gives you the keys
§ Use key to access value

• Can iterate over values
§ Method: d.values()
§ But no way to get key
§ Values are not unique

for k in d:
Loops over keys
print(k) # key
print(d[k]) # value

To loop over values only
for v in d.values():

print(v) # value

Other Iterator Methods

• Keys: d.keys()
§ No different normal loop
§ But good for extraction
§ keys = list(d.keys())

• Items: d.items()
§ Returns key-value pairs
§ Elements are tuples
§ Specialized uses

for k in d.keys():
Loops over keys
print(k) # key
print(d[k]) # value

for pair in d.items():
print(pair[0]) # key
print(pair[1]) # value

Relationship to Standard Lists

• Functions on dictionaries similar to lists
§ Go over dictionary (keys) with for-loop
§ Use accumulator to gather the results

• Only difference is how to access value
§ Remember, loop variable is keys
§ Use keys to access the values
§ But otherwise the same

Simple Example

def max_grade(grades):
"""Returns max grade in the grade dictionary

Precondition: grades has netids as keys, ints as values"""
maximum = 0 # Accumulator
Loop over keys
for k in grades:

if grades[k] > maximum:
maximum = grades[k]

return maximum

Another Example

def netids_above_cutoff(grades,cutoff):
"""Returns list of netids with grades above or equal cutoff

Precondition: grades has netids as keys, ints as values.
cutoff is an int."""
result = [] # Accumulator

for k in grades:
if grades[k] >= cutoff:

result.append(k) # Add key to the list result

return result

Relationship to Standard Lists

• Restrictions are different than list
§ Okay to loop over dictionary to change
§ You are looping over keys, not values
§ Like looping over positions

• But you may not add or remove keys!
§ Any attempt to do this will fail
§ Have to create a key list if you want to do

A Subtle Difference

But This is Okay

def give_extra_credit(grades,netids,bonus):
"""Gives bonus points to everyone in sequence netids

Precondition: grades has netids as keys, ints as values.
netids is a sequence of strings that are keys in grades
bonus is an int."""
No accumulator. This is a procedure

for student in grades:
if student in netids: # Test if student gets a bonus

grades[student] = grades[student]+bonus

Could also loop
over netids

Keyword Expansion

• Last use of dicts is an advanced topic
§ But will see if read Python code online
§ Variation of tuple variation

• An Observation:
§ Functions can be called with assignments
§ These assign parameters to specific variables
§ Can we do this with a single argument: a dictionary?

• Purpose of keyword expansion: **kw
§ But only works in certain contexts

Tuple Expansion Example

>>> def add(x, y)
. . . """Returns x+y """
. . . return x+y
. . .
>>> d = {'x':1,'y':2}
>>> add(**d) # Assigns to variable with name
3
>>> d = {'x':1,'y':2,'z':3} # Cannot have extra “variables”
>>> add(**d) # Can only have less if optional
ERROR

Have to use in
function call

Also Works in Function Definition

Also Works in Function Definition

def area_of_rectangle(**kw):
"""Returns the area of the specified rectangle.

Params: left,right,width,center,bottom,top,height,middle
Prec: params all int or float. Can compute width, height"""
width = None
if 'left' in kw and 'right' in kw:

width = kw['right']-kw['left']
elif 'width' in kw:

width = kw['width']
elif 'center' in kw:

if 'left' in kw:
width = 2*(kw['center']-kw['left'])

elif 'right' in kw:
width = 2*(kw['right']-kw['center'])

Automatically converts all
arguments to a dictionary

And similarly
for the height

When is This Useful?

• When have a lot of optional arguments
§ GUI libraries infamous for this: TKinter, Kivy
§ Have to specify lots of details for each widget
§ Where located, color, size, and so on

• Also when want flexibility (like example)

