

Motivation for Video

- This series is **not** about a control structure
- **Recursion:** a *programming technique*
 - Uses techniques you know in an usual way
 - Duplicates the iteration of for and while
 - Exists because it is often more efficient
- It is a very **advanced** topic
 - You will study this all four years of a CS program
 - We are not expecting you to master this
 - We just want you to understand the foundations

Recursive Definition

- A definition defined in terms of itself
- **Example:** PIP
 - Tool for installing Python packages
 - PIP stands for "PIP Installs Packages"
- Sounds like a circular definition
 - The example above is
 - But need not be in right circumstances

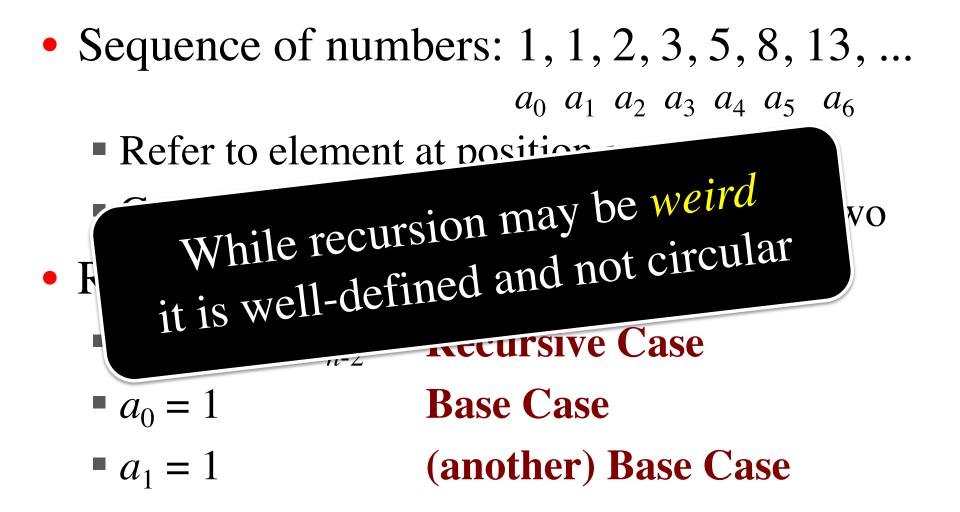
Example: Factorial

- Non-recursive definition (n an int >= 0):
 n! = n × n-1 × ... × 2 × 1
 0! = 1
- Refactor top formula as:
 n! = n (n-1 × ... × 2 × 1)
- Recursive definition:
 n! = n (n-1)! for n > 0 Recursive case
 0! = 1 Base case

Example: Fibonnaci

- Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ... $a_0 a_1 a_2 a_3 a_4 a_5 a_6$
 - Refer to element at position n as a_n
 - Get the next element by adding previous two
- Recursive definition:
 - $a_n = a_{n-1} + a_{n-2}$ Recursive Case $a_0 = 1$ Base Case $a_1 = 1$ (another) Base Case

Example: Fibonnaci



Recursive Functions

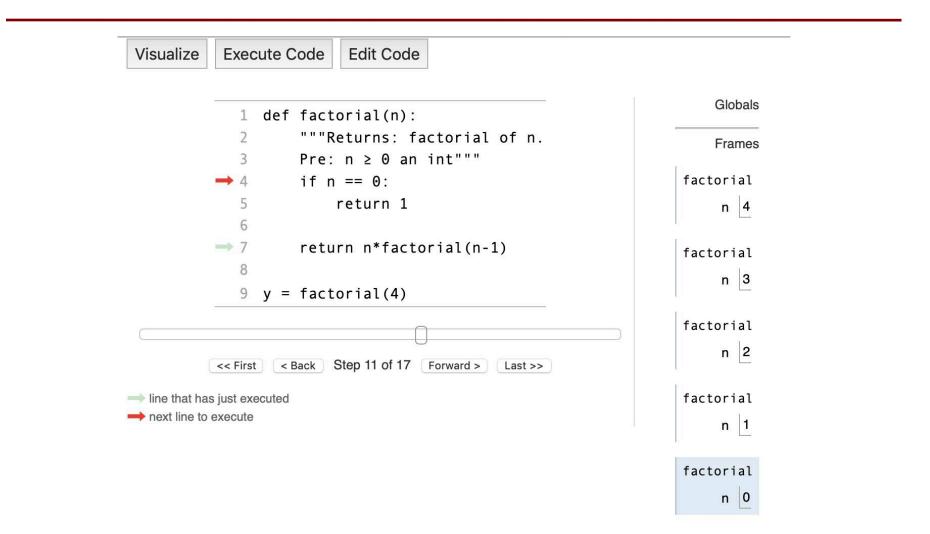
- A function that calls itself
 - Inside of body there is a call to itself
 - Very natural for recursive math defs
- **Recall:** Factorial
 - n! = n (n-1)! Recursive Case
 0! = 1 Base Case

Factorial as a Recursive Function

n! = n (n-1)!
0! = 1 **def** factorial(n): """Returns: factorial of n. Pre: $n \ge 0$ an int""" **if** n == 0: return 1 **Base case(s)** return n*factorial(n-1) **Recursive case**

What happens if there is no base case?

Factorial and Call Frames



Fibonacci as a Recursive Function

```
def fibonacci(n):
```

```
"""Returns: Fibonacci a_n
Precondition: n \ge 0 an int"""
if n \le 1:
return 1
```

•
$$a_n = a_{n-1} + a_{n-2}$$

•
$$a_0 = 1$$

•
$$a_1 = 1$$

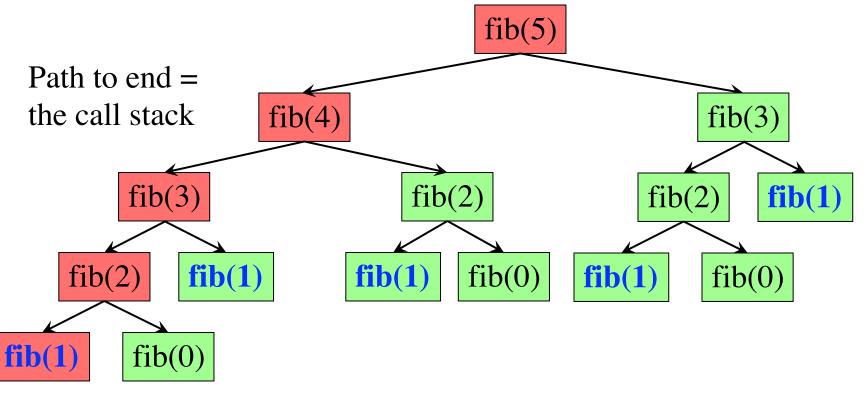
Base case(s)

Recursive case

```
return (fibonacci(n-1)+
fibonacci(n-2))
```

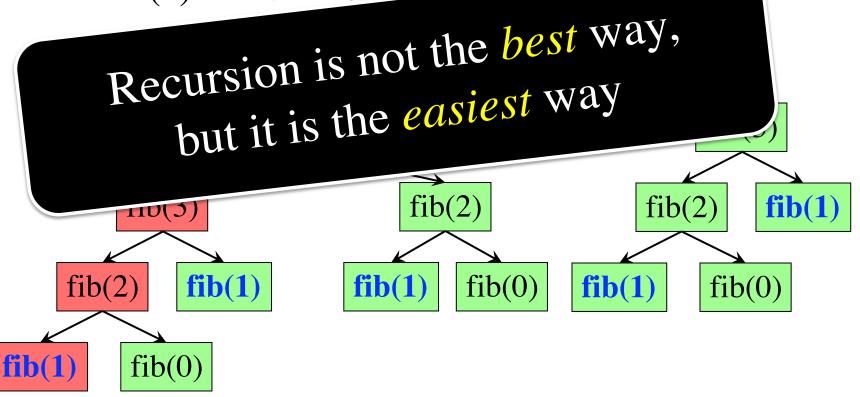
Fibonacci: # of Frames vs. # of Calls

- Fibonacci is very inefficient.
 - fib(*n*) has a stack that is always $\leq n$
 - But fib(n) makes a lot of redundant calls



Fibonacci: # of Frames vs. # of Calls

- Fibonacci is very inefficient.
 - fib(*n*) has a stack that is always $\leq n$
 - But fib(n) makes a lot of reduced

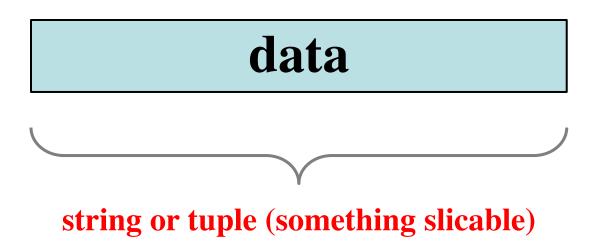


Recursion vs Iteration

- **Recursion** is *provably equivalent* to iteration
 - Iteration includes for-loop and while-loop (later)
 - Anything can do in one, can do in the other
- But some things are easier with recursion
 - And some things are easier with iteration
- Will **not** teach you when to choose recursion
 - This is a topic for more advanced courses
- But we will cover one popular use case

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

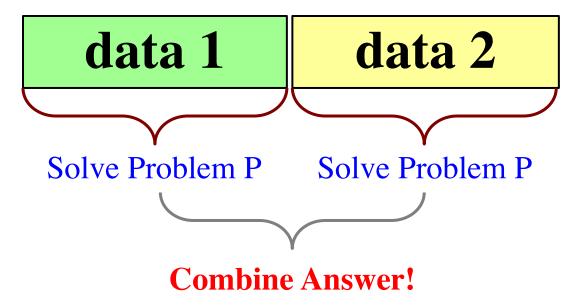


Recursion is best for Divide and Conquer

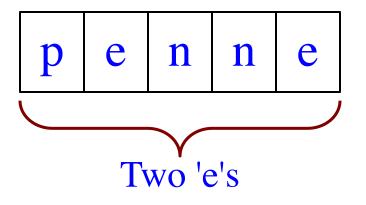
Goal: Solve problem P on a piece of data

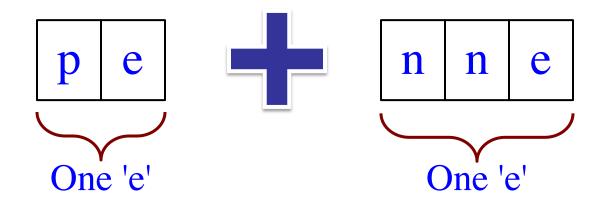
data

Idea: Split data into two parts and solve problem

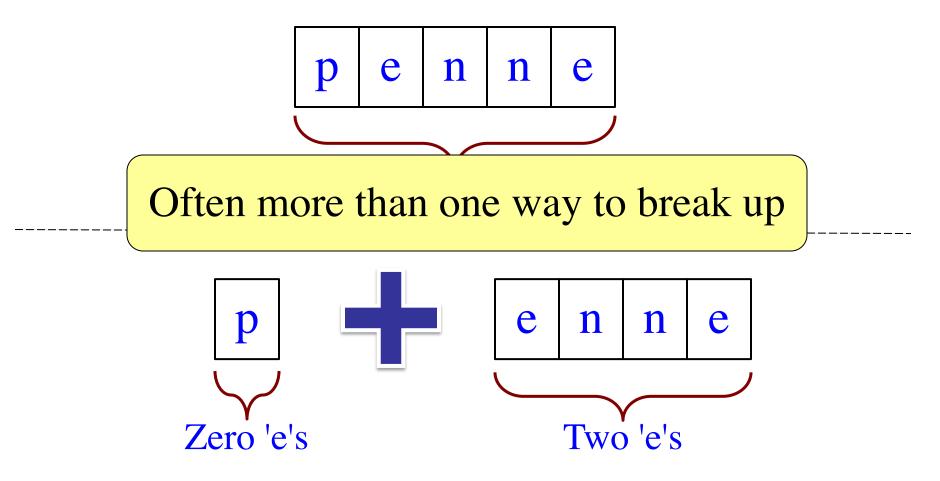


Count the number of 'e's in a string:

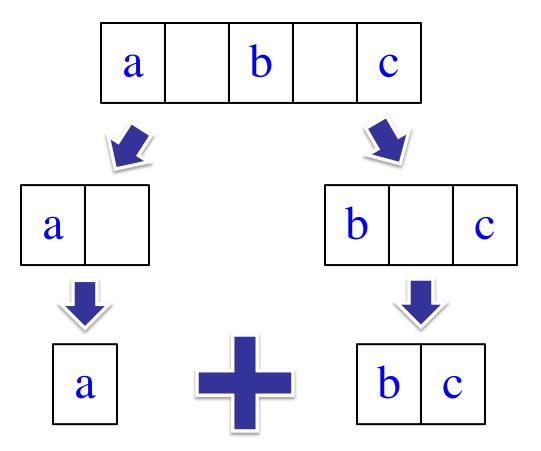




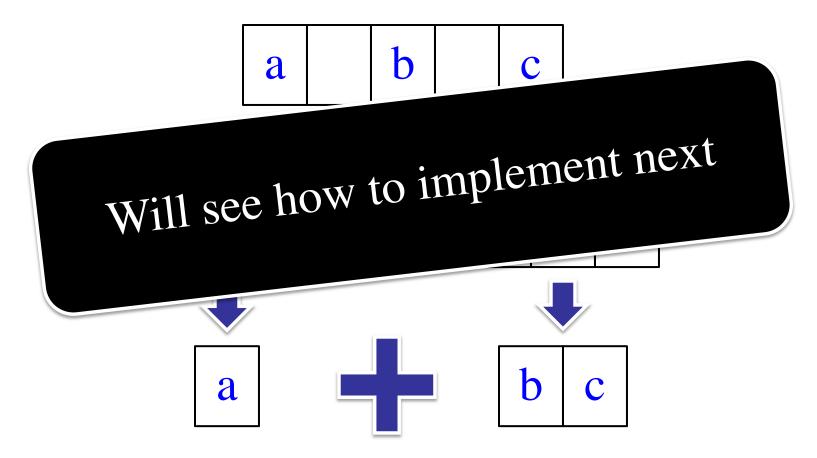
Count the number of 'e's in a string:



Remove all spaces from a string:

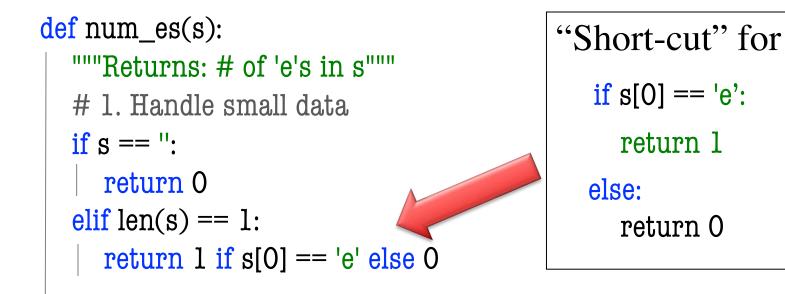


Remove all spaces from a string:



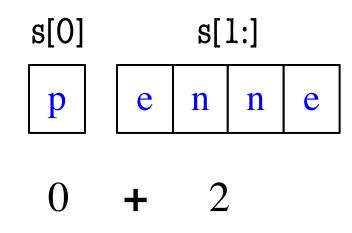
Three Steps for Divide and Conquer

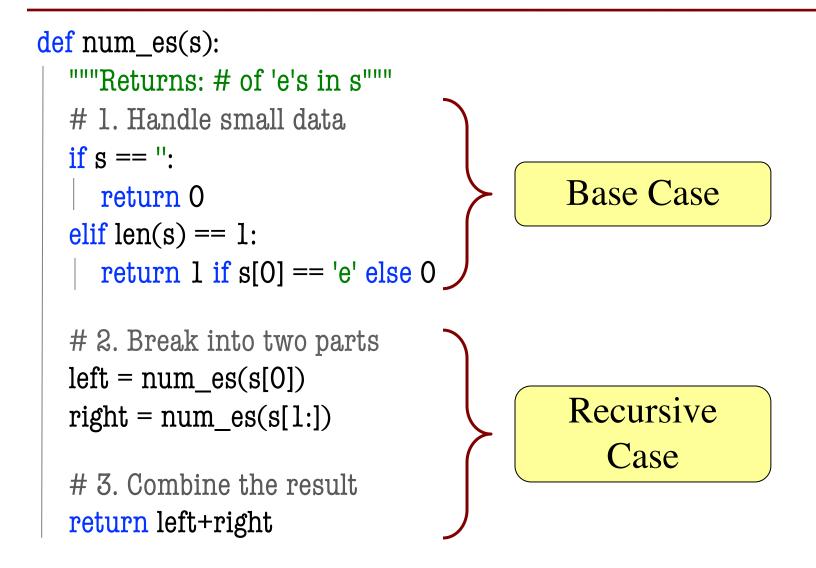
- 1. Decide what to do on "small" data
 - Some data cannot be broken up
 - Have to compute this answer directly
- 2. Decide how to break up your data
 - Both "halves" should be smaller than whole
 - Often no wrong way to do this (next lecture)
- 3. Decide how to combine your answers
 - Assume the smaller answers are correct
 - Combining them should give bigger answer



2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result return left+right





Exercise: Remove Blanks from a String

def deblank(s):

"""Returns: s but with its blanks removed"""

- 1. Decide what to do on "small" data
 - If it is the empty string, nothing to do if s == ": return s
 - If it is a **single character**, delete it if a blank

```
if s == ' ': # There is a space here
    return " # Empty string
```

else:

return s

Exercise: Remove Blanks from a String

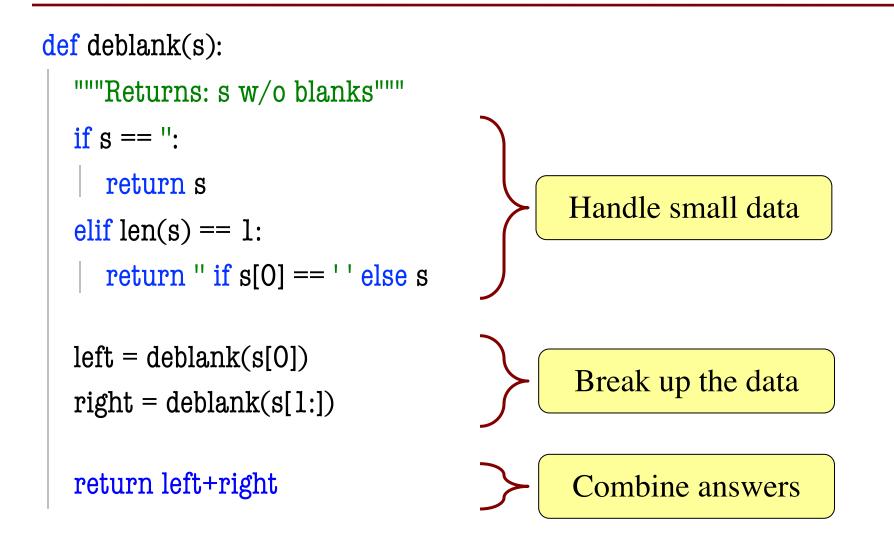
def deblank(s):
 """Returns: s but with its blanks removed"""

2. Decide how to break it up

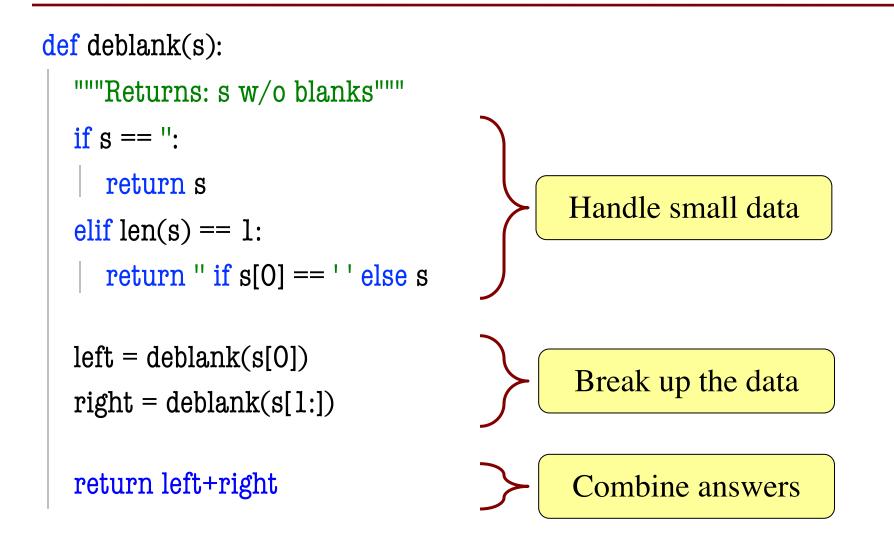
left = deblank(s[0]) # A string with no blanks
right = deblank(s[1:]) # A string with no blanks

3. Decide how to combine the answer return left+right # String concatenation

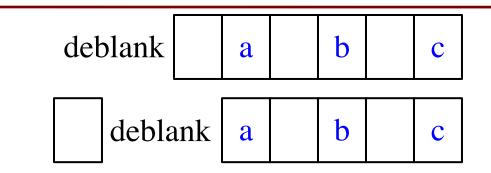
Putting it All Together

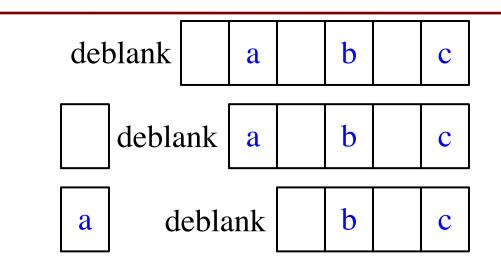


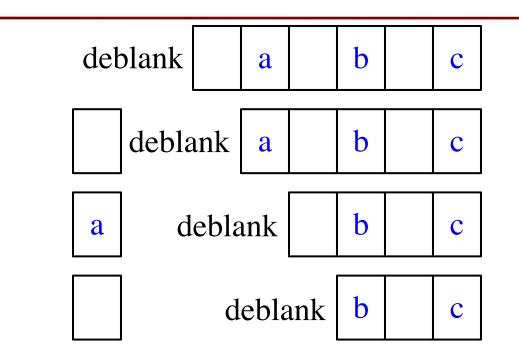
Putting it All Together

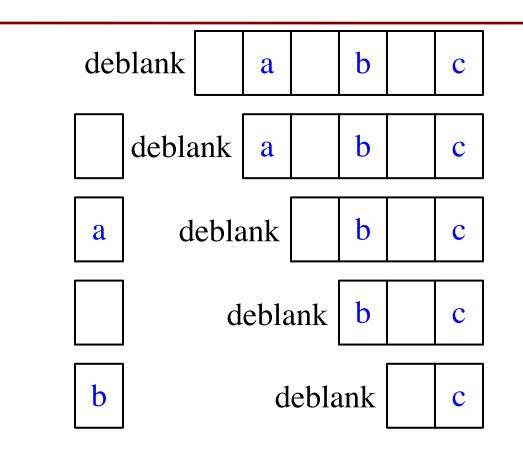


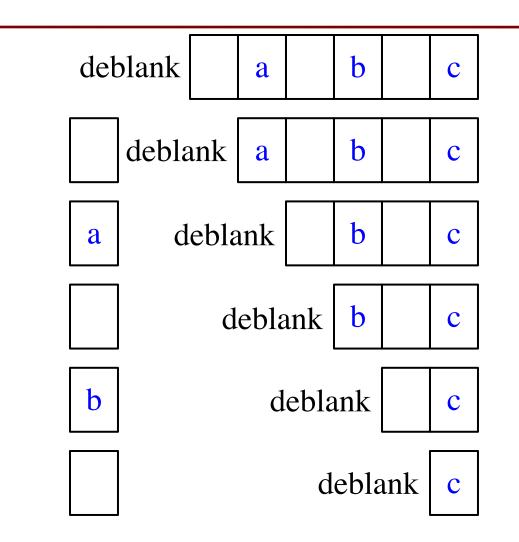
deblank		a		b		С	
---------	--	---	--	---	--	---	--

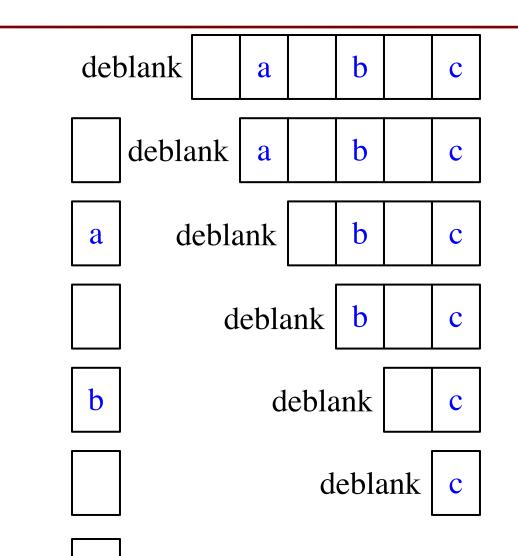






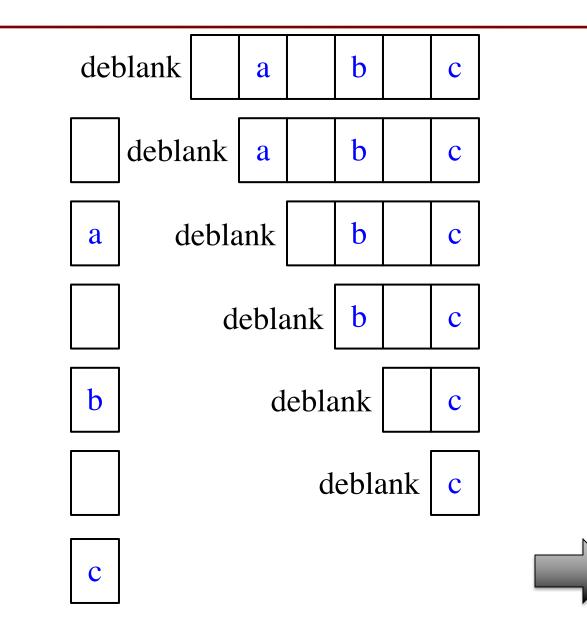


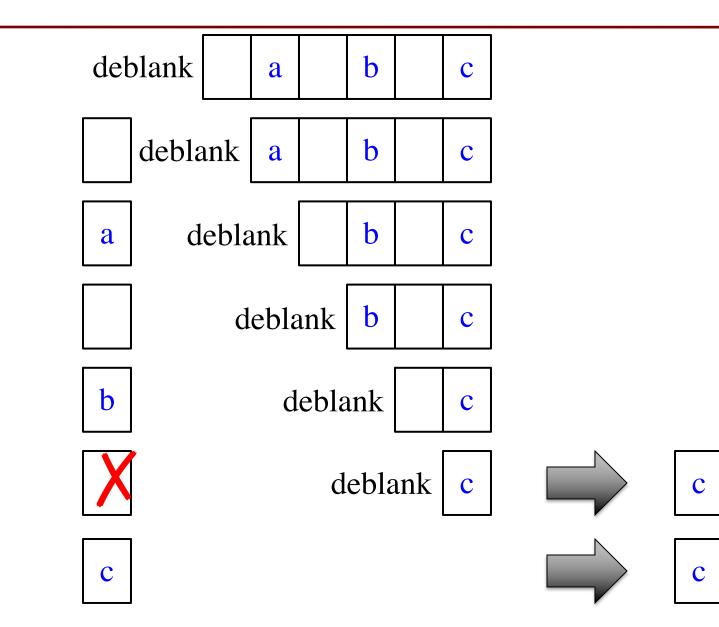


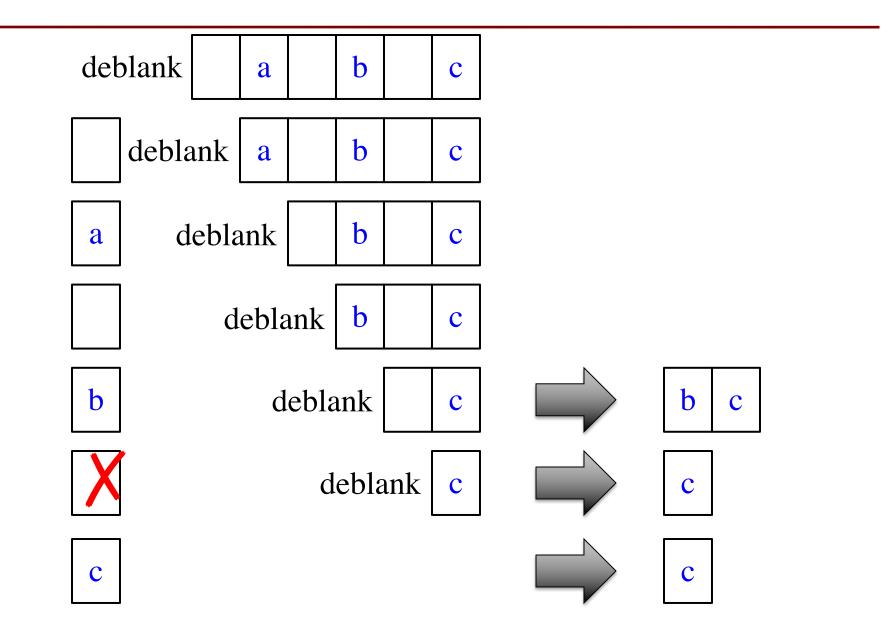


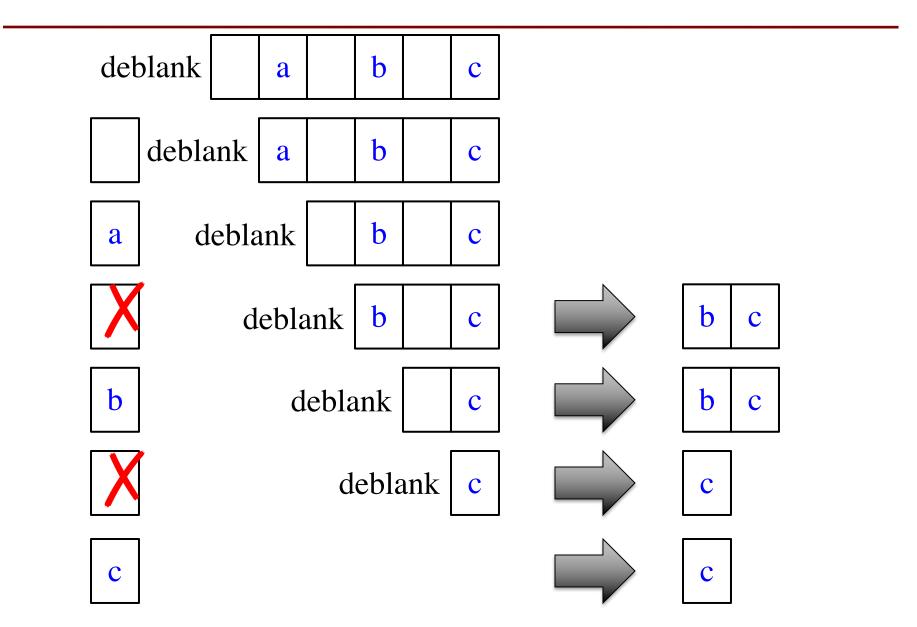
С

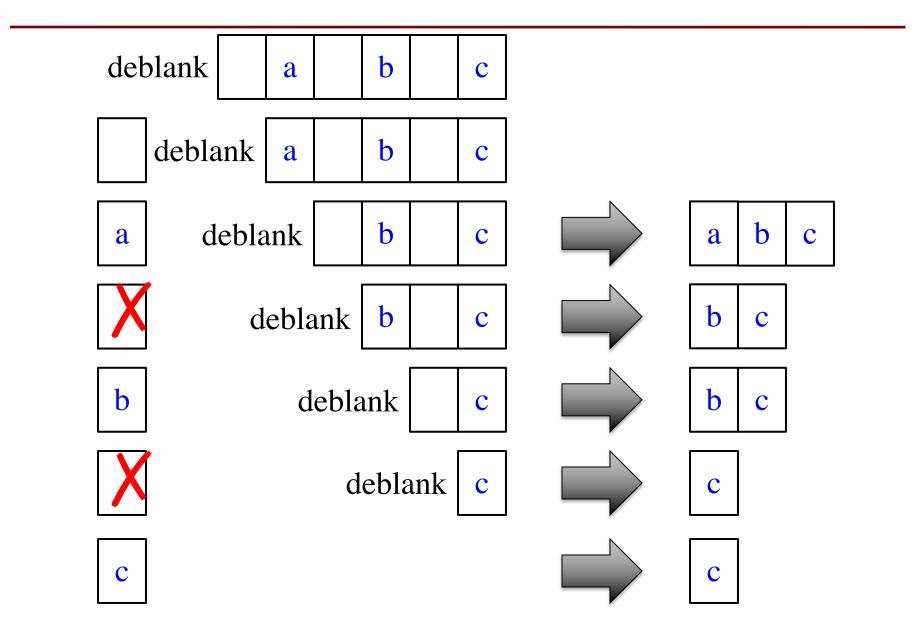
С

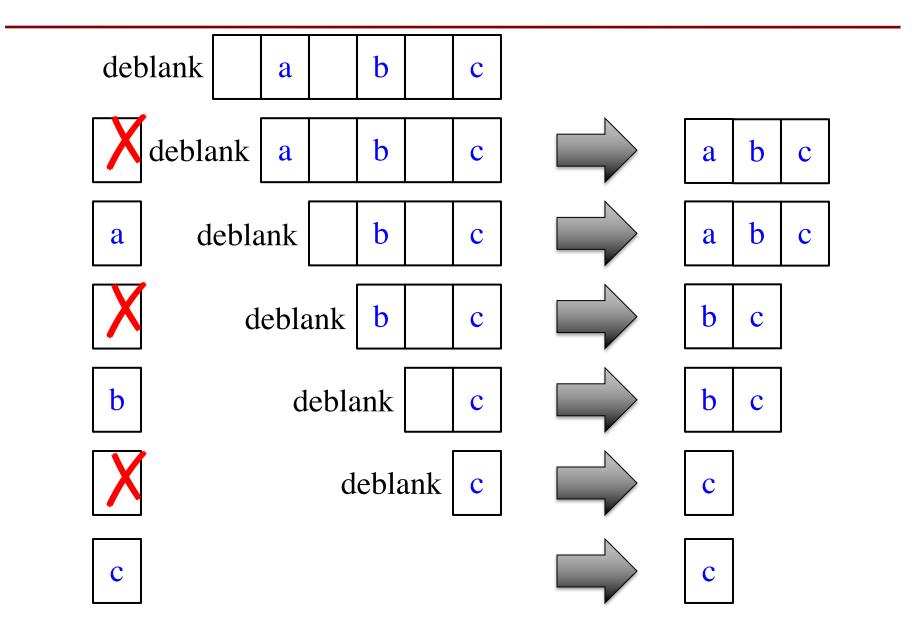


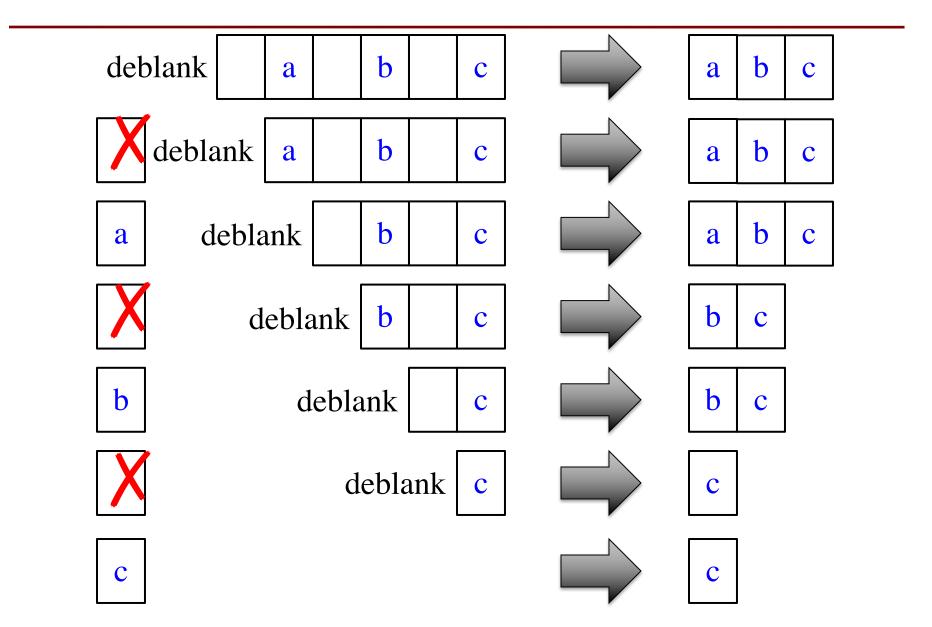












An Observation

- Divide & Conquer works in phases
 - Starts by splitting the data
 - Gets smaller and smaller
 - Until it reaches the base case
- Only then does it give an answer
 - Gives answer on the small parts
- Then glues all of them back together
 - Glues as the call frames are erased

Recursion vs For-Loop

- Think about our for-loop functions
 - For-loop extract one element at a time
 - Accumulator gathers the return value
- When we have a recursive function
 - The recursive step breaks into single elements
 - The return value IS the accumulator
 - The final step combines the return values
- Divide-and-conquer same as loop+accumulator

Breaking Up Recursion

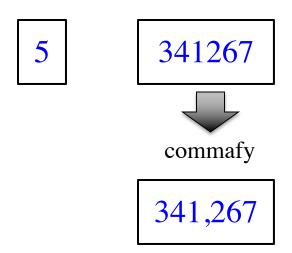
- D&C requires that we *divide* the data
 - Often does not matter how divide
 - So far, we just pulled off one element
 - Example: 'penne' to 'p' and 'enne'
- Can we always do this?
 - It depends on the *combination step*
 - Want to divide to make combination easy

def commafy(s):

"""Returns: string with commas every 3 digits e.g. commafy('5341267') = '5,341,267' Precondition: s represents a non-negative int"""

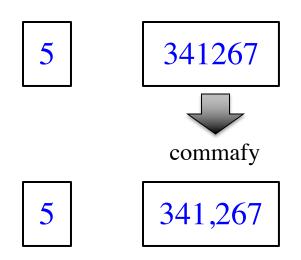
def commafy(s):

"""Returns: string with commas every 3 digits e.g. commafy('5341267') = '5,341,267' Precondition: s represents a non-negative int"""



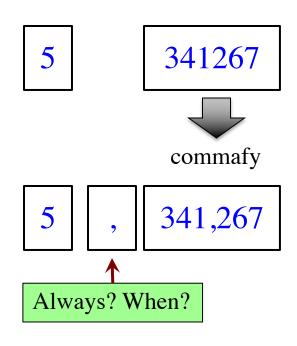
def commafy(s):

"""Returns: string with commas every 3 digits e.g. commafy('5341267') = '5,341,267' Precondition: s represents a non-negative int"""



def commafy(s):

"""Returns: string with commas every 3 digits e.g. commafy('5341267') = '5,341,267' Precondition: s represents a non-negative int"""



def commafy(s):

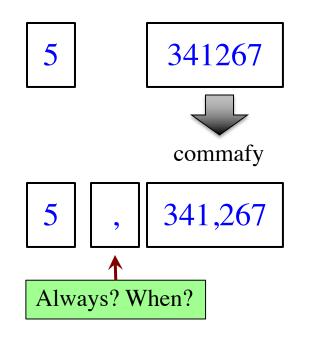
"""Returns: string with commas every 3 digits e.g. commafy('5341267') = '5,341,267' Precondition: s represents a non-negative int"""

Approach 1

Approach 2

267

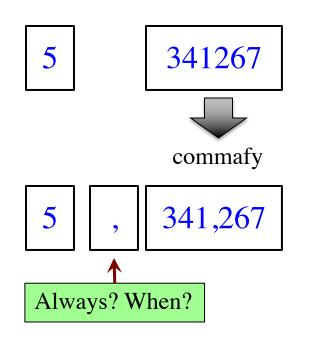
5341

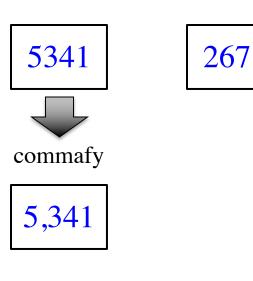


def commafy(s):

"""Returns: string with commas every 3 digits e.g. commafy('5341267') = '5,341,267' Precondition: s represents a non-negative int"""

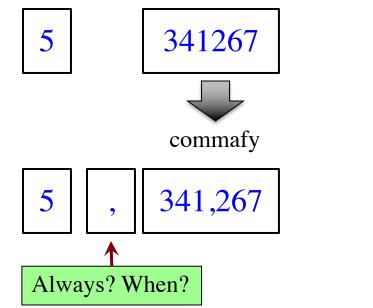
Approach 1

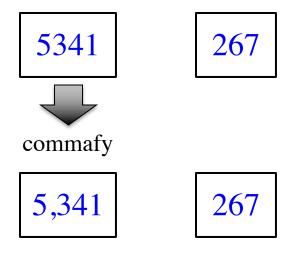




def commafy(s):

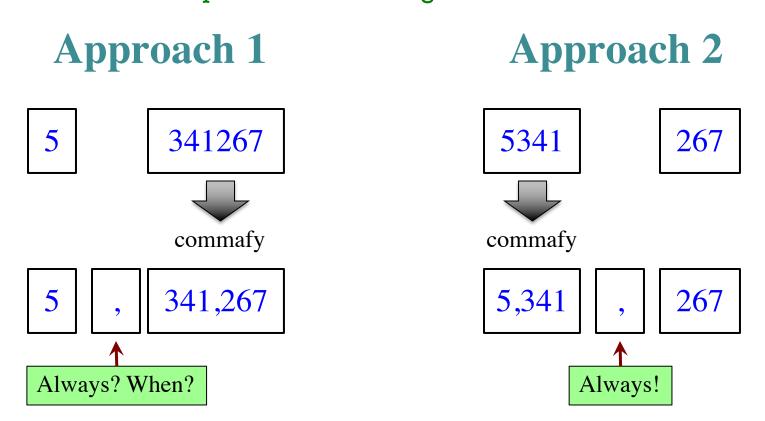
"""Returns: string with commas every 3 digits e.g. commafy('5341267') = '5,341,267' Precondition: s represents a non-negative int"""





def commafy(s):

"""Returns: string with commas every 3 digits e.g. commafy('5341267') = '5,341,267' Precondition: s represents a non-negative int"""

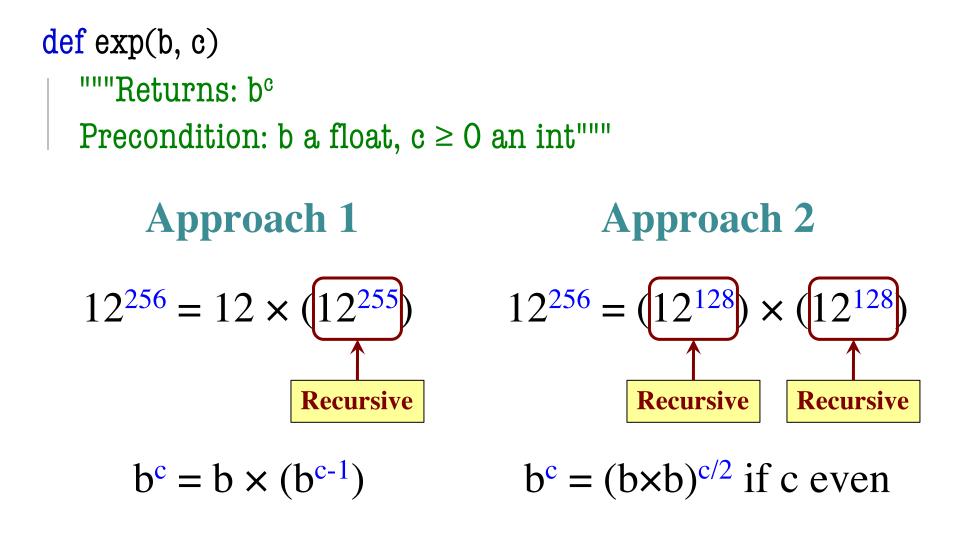


```
def commafy(s):
```

```
"""Returns: string with commas every 3 digits
e.g. commafy((5341267) = (5,341,267)
Precondition: s represents a non-negative int"""
# 1. Handle small data.
if len(s) \le 3:
                                                Base Case
  return s
# 2. Break into two parts
left = commafy(s[:-3])
                                                Recursive
right = s[-3:] # Small part on RIGHT
                                                   Case
# 3. Combine the result
return left + ',' + right
```

More Reasons to be Careful

- Does division only affect code complexity?
 - Does it matter if we are "good" at coding?
 - What if also affects performance?
- Think about the number of recursive calls
 - Each call generates a call frame
 - Have to execute steps in definition (again)
 - So more calls == slower performance
- Want to reduce number of recursive calls



Raising a Number to an Exponent

Approach 1	Approach 2	
def exp(b, c)	def exp(b, c)	
"""Returns: b ^c	"""Returns: b ^c	
Precond: b a float, $c \ge 0$ an int"""	Precond: b a float, $c \ge 0$ an int"""	
# b ⁰ is 1	# b ⁰ is 1	
if $c == 0$:	if $c == 0$:	
return 1	return 1	
$\# b^{c} = b(b^{c-1})$	# c > 0	
left = b	if c $\%$ 2 == 0:	
right = exp(b,c-1)	return exp(b*b,c//2)	
return left*right	return b*exp(b*b,(c-1)//2)	

Raising a Number to an Exponent

Approach 2 Approach 1 def exp(b, c)def exp(b, c)"""Returns: b^c """Returns: b^c Precond: b a float, $c \ge 0$ an int""" Precond: b a float, $c \ge 0$ an int""" # b⁰ is 1 $# b^0$ is 1 if c == 0: if c == 0: return 1 return 1 $\# b^{c} = b(b^{c-1})$ right left = breturn $\exp(b*b,c//2)$ right = $\exp(b,c-1)$ return b*exp(b*b,(c-1)/2)return left*right left right

Raising a Number to an Exponent

def exp(b, c)	с	# of calls
"""Returns: b ^c	0	0
Precond: b a float, $c \ge 0$ an int""" # b ⁰ is 1 if c == 0: return 1	1	1
	2	2
	4	3
	8	4
	16	5
# c > 0	32	6
	2 ⁿ	n + 1
if $c \% 2 == 0$:		
return $exp(b*b,c//2)$	32768 is 215	
return b*exp(b*b,(c-1)//2)	b ³²⁷⁶⁸ needs only 215 calls!	

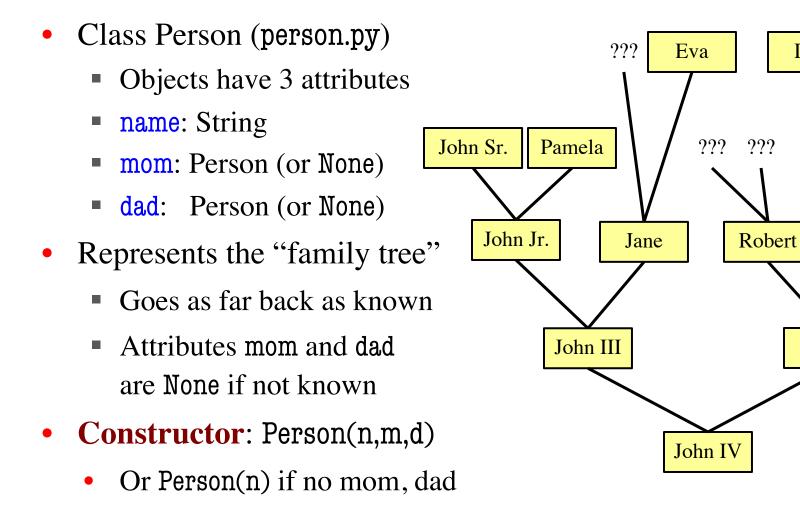
Recursion and Objects

Heather

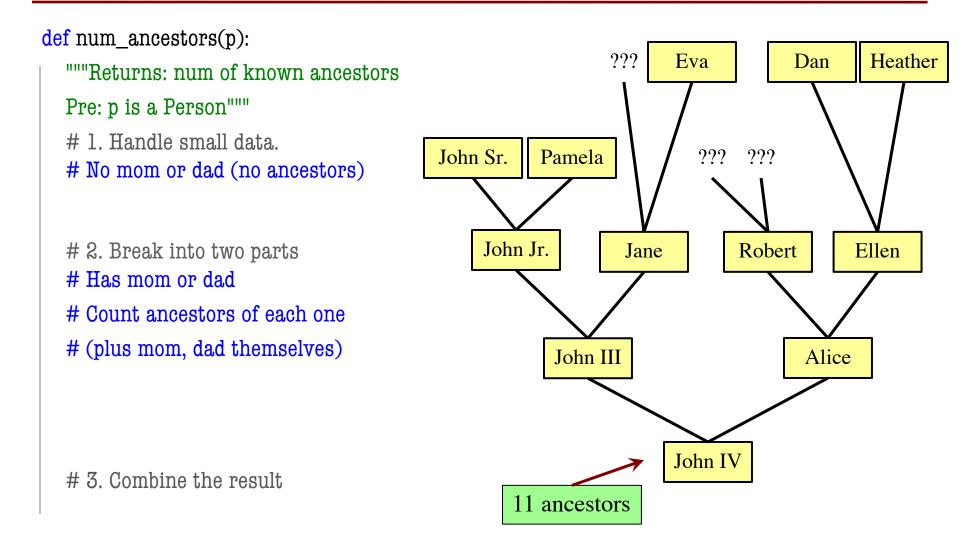
Ellen

Alice

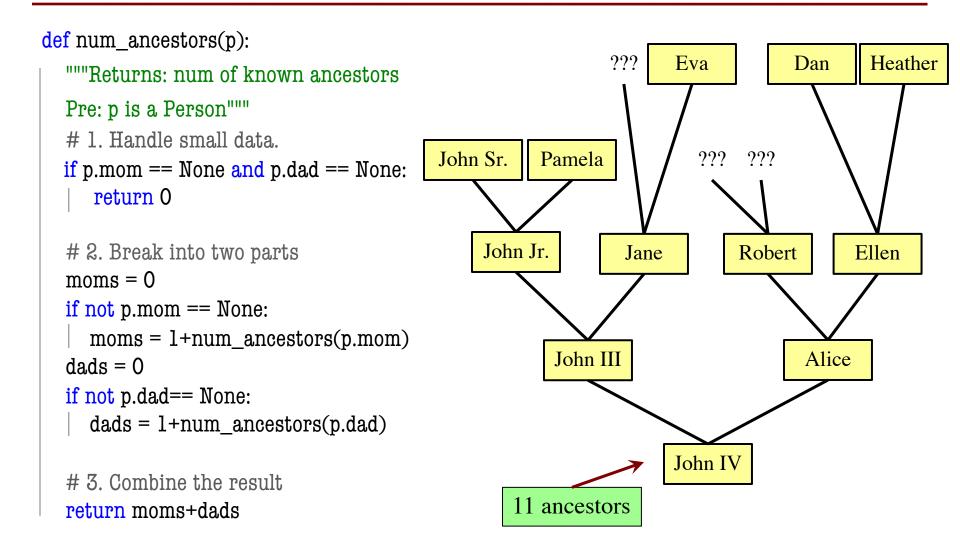
Dan



Recursion and Objects



Recursion and Objects



Is All Recursion Divide and Conquer?

- Divide and conquer implies two halves "equal"
 - Performing the same check on each half
 - With some optimization for small halves
- Sometimes we are given a **recursive definition**
 - Math formula to compute that is recursive
 - String definition to check that is recursive
 - Picture to draw that is recursive
 - **Example**: n! = n (n-1)!
- In that case, we are just implementing definition

Example: Palindromes

- String with ≥ 2 characters is a palindrome if:
 - its first and last characters are equal, and
 - the rest of the characters form a palindrome
- Example:

have to be the same

Á MANAPLANACANALPANAMÀ

has to be a palindrome

• Function to Implement:

def ispalindrome(s):

"""Returns: True if s is a palindrome"""

Example: Palindromes

- String with ≥ 2 characters is a palindrome if:
 - its first and last characters are equal, and
 - the rest of the characters form a palindrome

```
def ispalindrome(s):
```

```
"""Returns: True if s is a palindrome"""
```

```
if len(s) < 2:
return True
```

```
Base case
```

```
# Halves not the same; not divide and conquer
ends = s[0] == s[-1]
middle = ispalindrome(s[1:-1])
return ends and middle
Recursive case
```

Recursive Definition

Example: Palindromes

- String with ≥ 2 characters is a palindrome if:
 - its first and last characters are equal, and
 - the rest of the characters form
 def ispalindrome(s):
 """Returns: True if s is a palindrom
 if len(s) < 2:
 return True
 Base case


```
# Halves not the same; not divide and conquer
ends = s[0] == s[-1]
middle = ispalindrome(s[1:-1])
return ends and middle
Recursive case
```

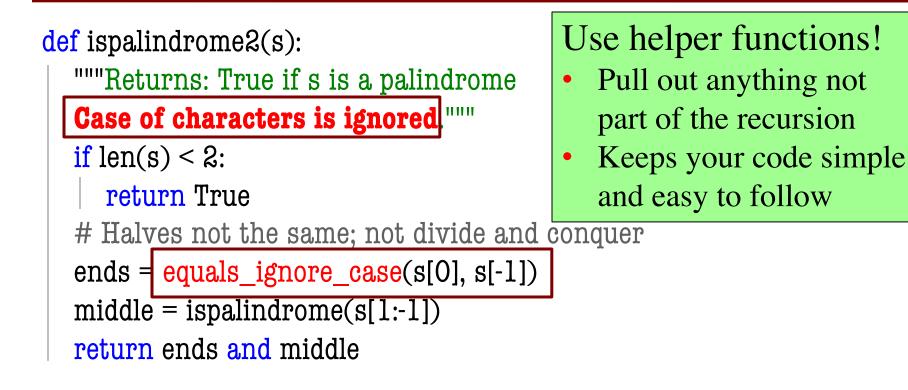
Recursive Functions and Helpers

```
def ispalindrome2(s):
    """Returns: True if s is a palindrome
    Case of characters is ignored."""
    if len(s) < 2:
        return True
    # Halves not the same; not divide and conquer
    ends = equals_ignore_case(s[0], s[-1])
    middle = ispalindrome(s[1:-1])
    return ends and middle</pre>
```

Recursive Functions and Helpers

```
def ispalindrome2(s):
    """Returns: True if s is a palindrome
    Case of characters is ignored
    """
    if len(s) < 2:
        return True
    # Halves not the same; not divide and conquer
    ends = equals_ignore_case(s[0], s[-1])
    middle = ispalindrome(s[1:-1])
    return ends and middle</pre>
```

Recursive Functions and Helpers



def equals_ignore_case(a, b):

```
"""Returns: True if a and b are same ignoring case"""
return a.upper() == b.upper()
```

Example: More Palindromes

def ispalindrome3(s):

"""Returns: True if s is a palindrome

Case of characters and non-letters ignored."""

return ispalindrome2(depunct(s))

```
def depunct(s):
```

"""Returns: s with non-letters removed"""

```
if s == '':
```

return s

Combine left and right

if s[0] in string.letters:

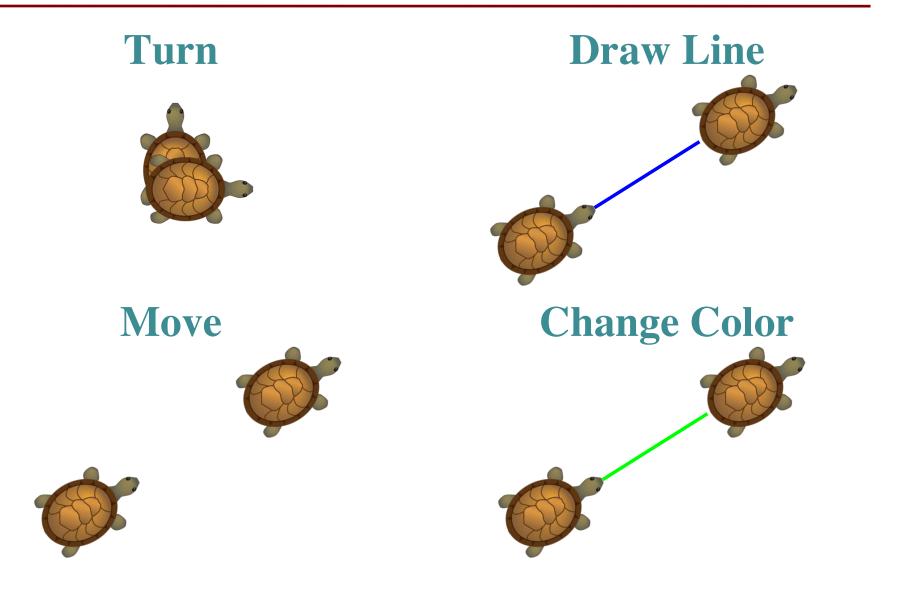
```
return s[0]+depunct(s[1:])
```

```
# Ignore left if it is not a letter
return depunct(s[1:])
```

Use helper functions!

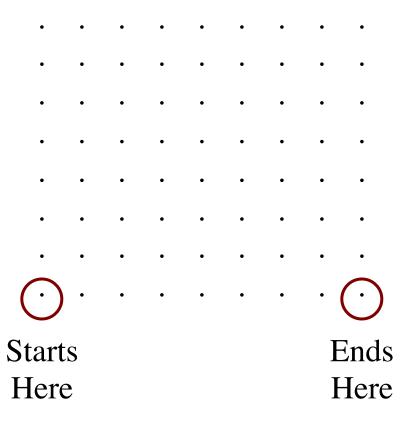
- Sometimes the helper is a recursive function
- Allows you break up problem in smaller parts

"Turtle" Graphics: Assignment A4



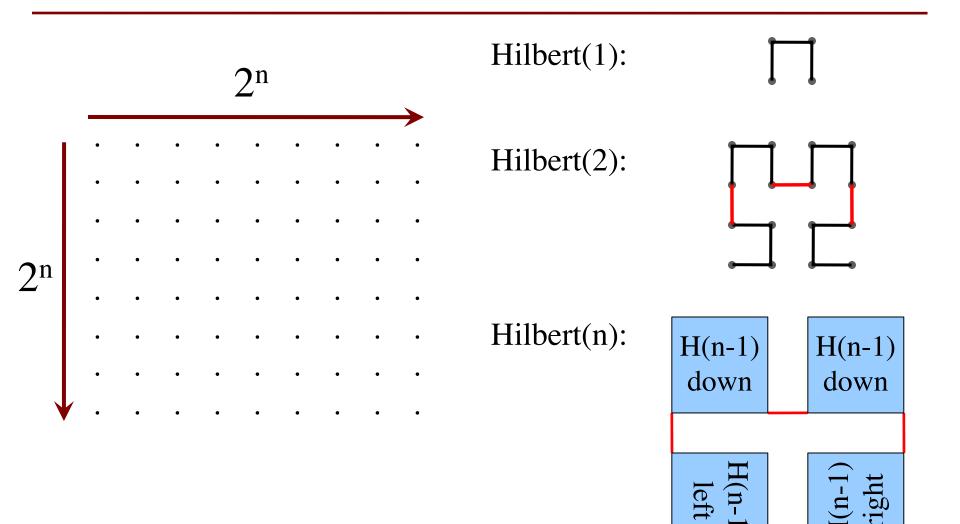
Example: Space Filling Curves

Challenge



- Draw a curve that
 - Starts in the left corner
 - Ends in the right corner
 - Touches every grid point
 - Does not touch or cross itself anywhere
- Useful for analysis of 2-dimensional data

Hilbert's Space Filling Curve



Hilbert's Space Filling Curve

Basic Idea

- Given a box
- Draw 2ⁿ × 2ⁿ
 grid in box
- Trace the curve
- As n goes to ∞, curve fills box

