Module 17

Recursion

Motivation for Video

* This series 1s not about a control structure

 Recursion: a programming technique
= Uses techniques you know in an usual way
= Duplicates the iteration of for and while

= Exists because it 1s often more efficient
e Itis a very advanced topic
* You will study this all four years of a CS program

= We are not expecting you to master this

" We just want you to understand the foundations

Recursive Definition

e A definition defined in terms of itself

o Example: PIP

= Tool for installing Python packages
= PIP stands for “PIP Installs Packages™

 Sounds like a circular definition

* The example above 1s

= But need not be in right circumstances

Example: Factorial

e Non-recursive definition (n an it >= 0):
nl=n Xn-1X ... X2 X1
O!'=1

e Refactor top formula as:
n'l=nmn-1 X ... X2 X 1)

e Recursive definition:

n!=n(m-1)! forn>0 Recursive case
0O!'=1 Base case

Example: Fibonnaci

* Sequence of numbers: 1,1,2,3,5,8,13, ...
dogp dy Ay dy Ay dg5 dg
= Refer to element at position z as a,,

= Get the next element by adding previous two
* Recursive definition:

"a,=a,,+a,, Recursive Case

"a,=1 Base Case

"a, =1 (another) Base Case

Example: Fibonnaci

* Sequence of numbers: 1,1,2,3,5,8,13, ...
a, a; a, as a, ds dag

= Refer to element at positicee

mcoursive Case

"a,=1 Base Case
"a, = (another) Base Case

Recursive Functions

* A function that calls itself
* Inside of body there 1s a call to itselt

" Very natural for recursive math defs
e Recall: Factorial

"n! =n (n-1)! Recursive Case

0l =1 Base Case

Factorial as a Recursive Function

def factorial(n): *n!=n(n-1)!
"""Returns: factorial of n.
e Ol =1

Pre: n >0 an int"""

if n==0:
~ return 1 Base case(s)

return n*factorial(n-1) | Recursive case

What happens if there 1s no base case?

Factorial and Call Frames

Visualize | Execute Code | Edit Code

def

y=

factorial(n):
"""Returns: factorial of n.
Pre: n 2 0 an int"""
if n ==
return 1

return n*factorial(n-1)

factorial(4)

0

<< First <Back Step 11 0of 17 Forward > Last >>

line that has just executed
==) next line to execute

Globals

Frames
factorial

n 4

factorial

n 3

factorial

n 2

factorial

n (1

factorial

n O

Fibonacci as a Recursive Function

def fibonacci(n): *a,=a,,+a,,

IIIIIIR : F' :

eturns: Fibonacci 4, . q,= 1
Precondition: n = 0 an int"""
ifn<=1: *a;= 1
. return 1 Base case(s)
return (fibonacei(n-1)+ Recursive case

fibonacei(n-2))

Fibonacci: # of Frames vs. # of Calls

* Fibonacci 1s very inefficient.
* fib(n) has a stack that i1s always <n

= But fib(n) makes a lot of redundant calls

fib(5)
Path to end = / \
the call stack fib(4) fib(3)
fib(3) fib(2) fib(2) | |fib(1)
fib(2) | |fib(1) fib(1) | | fib(0)| |fib(1) | |fib(0)

>
fib(1) fib(0)

Fibonacci: # of Frames vs. # of Calls

* Fibonacci 1s very inefficient.

" fib(n) has a stack that is always < n

= But fib(n) makes a 10t Of rode

Recursion vs Iteration

e Recursion is provably equivalent to iteration

= Jteration includes for-loop and while-loop (later)

* Anything can do in one, can do in the other

* But some things are easier with recursion

* And some things are easier with iteration

* Will not teach you when to choose recursion

= This 1s a topic for more advanced courses

* But we will cover one popular use case

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data

N\ J
Y

string or tuple (something slicable)

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1 data 2

Y Y
Solve Problem P Solve Problem P
. J
Y

Combine Answer!

Divide and Conquer Example

Count the number of 'e's in a string:

Divide and Conquer Example

Count the number of 'e's in a string:

1%

C

n

n

C

G

_/

\/

Divide and Conquer Example

Remove all spaces from a string:

a b C

| 4 b

a b C

a + b|cC

Divide and Conquer Example

Remove all spaces from a string:

Three Steps for Divide and Conquer

1. Decide what to do on “small” data

= Some data cannot be broken up

= Have to compute this answer directly

2. Decide how to break up your data
= Both “halves” should be smaller than whole
= Often no wrong way to do this (next lecture)
3. Decide how to combine your answers

= Assume the smaller answers are correct

= Combining them should give bigger answer

Divide and Conquer Example

def num_es(s):

""Returns: # of 'e's in s"""
1. Handle small data

if g=="

" return 0

elif len(s) == 1:

 return 1 if s[0] == "e' else O

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

“Short-cut” for

if s[0] == "¢’
return 1

else:
return O

0] s[1:]

plle|n|n

0O + 2

Divide and Conquer Example

def num_es(s):

"""Returns: # of 'e's in s"™"

1. Handle small data)
ifg=="

" return O > [Base Case }
elif len(s) == 1:

 return 1 if s[0] =="e' else 0

2. Break into two parts N
left = num_es(s[0]) .
right = num_es(s[1:]) > [Recursive }

Case

3. Combine the result
return left+right Y,

Exercise: Remove Blanks from a String

def deblank(s):
’ |||||'RetUPnS: S but with its bl&nks removed"""

1. Decide what to do on “small” data

= If it is the empty string, nothing to do

ifg=="
.~ return s

= If it is a single character, delete it if a blank

ifs=="'"" # There is a space here
. return" # Empty string
else:

. return s

Exercise: Remove Blanks from a String

def deblank(s):
’ nm'RetuPnS: S but with its bl&nks removed"""

2. Decide how to break it up

left = deblank(s[0]) # A string with no blanks
right = deblank(s[1:]) # A string with no blanks

3. Decide how to combine the answer
return left+right # String concatenation

Putting it All Together

def deblank(s):

""Returns: s w/o0 blanks™"
if g==" A

. return s
| >{ Handle small data }
elif len(s) == 1:

- return "if s[0]==""elses

left = deblank(s[0]) [Break up the dat }
right = deblank(s[1:]) e

return left+right }[Combine answers }

Putting it All Together

def deblank(s):

""Returns: s w/o0 blanks™"
if g==" A

. return s
| >{ Handle small data }
elif len(s) == 1:

- return "if s[0]==""elses

left = deblank(s[0]) [Break up the dat }
right = deblank(s[1:]) e

return left+right }[Combine answers }

Following the Recursion

deblank a b C

Following the Recursion

deblank a b C

deblank | a b C

Following the Recursion

deblank a b C

deblank | a b C

a deblank b C

Following the Recursion

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

Following the Recursion

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

Following the Recursion

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

deblank | c

Following the Recursion

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

deblank | c

Following the Recursion

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

deblank | c

Following the Recursion

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

x deblank | c

Following the Recursion

deblank a b C

deblank | a b C

a deblank b C

deblank | b C

b deblank C

x deblank | c

¢33

Following the Recursion

deblank a b C

deblank | a b C

a deblank b C

Z deblank | b C

b deblank C

x deblank | c

L3339

Following the Recursion

deblank a b C

a

X
X

deblank | a b C

deblank b C

deblank | b C
deblank C
deblank | c

Following the Recursion

deblank a b C

Xdeblank a b C

a deblank b C

Z deblank | b C

b deblank C

x deblank | c

33333

Following the Recursion

deblank a b C

Xdeblank a b C

a deblank b C

z deblank | b C

b deblank C

x deblank | c

222222

An Observation

* Divide & Conquer works in phases
= Starts by splitting the data
= Gets smaller and smaller
= Until 1t reaches the base case
* Only then does 1t give an answer
= Gives answer on the small parts
* Then glues all of them back together

= Glues as the call frames are erased

Recursion vs For-Loop

e Think about our for-loop functions
= For-loop extract one element at a time

= Accumulator gathers the return value

e When we have a recursive function

= The recursive step breaks into single elements

= The return value IS the accumulator

= The final step combines the return values

e Divide-and-conquer same as loop+accumulator

Breaking Up Recursion

* D&C requires that we divide the data
= Often does not matter how divide
= So far, we just pulled off one element
= Kxample: 'penne’ to 'p' and 'enne’
* Can we always do this?
= [t depends on the combination step

" Want to divide to make combination easy

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '56,841,267"
Precondition: s represents a non-negative int""

Approach 1

5 341267

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '56,841,267"
Precondition: s represents a non-negative int""

Approach 1
5 341267
commafy

341,267

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '56,841,267"
Precondition: s represents a non-negative int""

Approach 1
5 341267
commafy

5 341,267

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '56,841,267"
Precondition: s represents a non-negative int""

Approach 1
5 341267
commafy
S|, || 341,267
A
Always? When?

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '56,841,267"
Precondition: s represents a non-negative int""

Approach 1 Approach 2
5 341267 5341 267
commafy
511, || 341,267
A
Always? When?

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '56,841,267"
Precondition: s represents a non-negative int""

Approach 1 Approach 2
5 341267 5341 2677
commafy commafy
511, || 341,267 5341

A
Always? When?

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '56,841,267"
Precondition: s represents a non-negative int""

Approach 1 Approach 2
5 341267 5341 2677
commafy commafy
S|, || 341,267 5,341 2677
A
Always? When?

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '56,841,267"
Precondition: s represents a non-negative int""

Approach 1 Approach 2
5 341267 5341 2677
commafy commafy
S|, || 341,267 5341 (| , || 267
A A
Always? When? Always!

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '56,841,267"
Precondition: s represents a non-negative int""

1. Handle small data.

if len(s) <= 3 © BaseCase
. return s

2. Break into two parts N
left = commafy(s[:-3]) .
right = s[-3:] # Small part on RIGHT > [Recursive }

3. Combine the result Case
return left + ' + right y

More Reasons to be Careful

* Does division only affect code complexity?
= Does 1t matter if we are “good” at coding?
= What if also affects performance?

* Think about the number of recursive calls

= Each call generates a call frame
= Have to execute steps in definition (again)

= So more calls == slower performance

e Want to reduce number of recursive calls

How to Break Up a Recursive Function?

def exp(b, ¢)
"""Returns: b¢

Precondition: b a float, ¢ =2 0 an int"™"

Approach 1

Approach 2

2= 20@ 2= @9 = @23

Recursive

b =b x (b¢1)

Recursive

Recursive

b¢ = (bxb)*? if ¢ even

Raising a Number to an Exponent

Approach 1 Approach 2

def exp(b, ¢) def exp(b, ¢)

"""Returns: b° """Returns: b°

Precond: b a float, ¢ = 0 an int""" Precond: b a float, ¢ = 0 an int"""

#b%is 1 #b%is 1

ifc==0: ifc==0:

’ return 1 ’ return 1

b¢ = b(b¢!) #c>0

left=>b ifc % 2 ==0:

right = exp(b,c-1) ~ return exp(b*b,c//2)

return left*right return b*exp(b*b,(c-1)//2)

Raising a Number to an Exponent

Approach 1 Approach 2
def exp(b, ¢) def exp(b, ¢)
"""Returns: b° """Returns: b°
Precond: b a float, ¢ = 0 an int""" Precond: b a float, ¢ = 0 an int"""
#bVis 1 #bYis 1
ifc==0: ifc==0:
’ return 1 ’ return 1
b¢ = b(b¢!) #c>0
left right
left=>b 1f c % g—xr] @/g—]
right = exp(b,c-1) return exp(b*b,c//2)
return left*right return b*exp(b*b,(c-1)//2)

Raising a Number to an Exponent

def exp(b, ¢) c # of calls
"""Returns: b° 0 0
Precond: b a float, ¢ = 0 an int™" 1 1
#b0is 1 2 2
ifc==0: 4 3
return 1 8 4
16 5
32 6
#c>0 , o
ifc%?2==0:
| remm expbTh.e) 32768 is 215

return b*exp(b*b,(c-1)//2) b327%8 needs only 215 calls!

Recursion and Objects

e C(lass Person (person.py)
= Objects have 3 attributes

" name: String
= mom: Person (or None)

John Sr.

= dad: Person (or None)

* Represents the “family tree”

= Goes as far back as known

= Attributes mom and dad

are None if not known

 Constructor: Person(n,m,d)

Or Person(n) if no mom, dad

777 Eva Dan Heather
Pamela 777 27?
John Jr. Jane Robert Ellen

N/

John III

N/

~.

John IV

Alice

Recursion and Objects

def num_ancestors(p):
"""Returns: num of known ancestors
Pre: p is a Person""

1. Handle small data.
No mom or dad (no ancestors)

2. Break into two parts
Has mom or dad

Count ancestors of each one
(plus mom, dad themselves)

3. Combine the result

7771 Eva Dan Heather
John Sr. || Pamela 7M
N “
John Jr. Jane Robert Ellen
NS N\/
John III Alice

~.

John IV

e

11 ancestors

Recursion and Objects

def num_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person""

1. Handle small data.

if p.mom == None and p.dad == None:
| return O

2. Break into two parts

moms =0

if not p.mom == None:

| moms = 1+num_ancestors(p.mom)
dads =0

if not p.dad== None:

| dads = 1+num_ancestors(p.dad)

3. Combine the result
return moms+dads

779 Eva Dan Heather
John Sr. || Pamela 7?7977
John Jr. Jane Robert Ellen

N/

John III

e

11 ancestors

N/

Alice

~.

John IV

Is All Recursion Divide and Conquer?

* Divide and conquer implies two halves “equal”
" Performing the same check on each half

= With some optimization for small halves

* Sometimes we are given a recursive definition
= Math formula to compute that 1s recursive
= String definition to check that is recursive
= Picture to draw that 1s recursive
= Kxample: n! =n (n-1)!

 In that case, we are just implementing definition

Example: Palindromes

e String with = 2 characters 1s a palindrome if:
" its first and last characters are equal, and

" the rest of the characters form a palindrome

 Example:
have to be the same

—
AMANAPLANACANALPA@

has to be a palindrome
 Function to Implement:

def ispalindrome(s):
"""Returns: True if s is a palindrome™™"

Example: Palindromes

e String with = 2 characters 1s a palindrome if:

" its first and last characters are equal, and

" the rest of the characters form a palindrome

def ispalindrome(s):

"""Returns: True if s is a palindrome™™"

if len(s) < 2:

Base case

~ return True

ends = g[0] == g[-1]
middle = ispalindrome(s[1:-1])
return ends and middle

Halves not the same; not divide and conquer

Recursive
Definition

Recursive case

Example: Palindromes

e String with = 2 characters 1s a palindrome if:
" its first and last characters are equal, and

" the rest of the characters form But what if we

def ispalindrome(s):
"""Returns: True if s is a palindrom
if len(s) < 2:

. peturn True

want to deviate’!

Base case

Halves not the same; not divide and conquer
ends = s[0] == s[-1]

middle = ispalindrome(s[1:-1]) Recursive case
return ends and middle

Recursive Functions and Helpers

def ispalindrome?(s):

""Returns: True if s is a palindrome

Case of characters is ignored.""

if len(s) < 2:

. return True

Halves not the same; not divide and conquer
ends = equals_ignore_case(s[0], s[-1])

middle = ispalindrome(s[1:-1])

return ends and middle

Recursive Functions and Helpers

def ispalindrome?(s):

"""Returns: True if s is a palindrome

Case of characters is ignored}""

if len(s) < 2:

. return True

Halves not the same; not divide and conquer
ends 4 equals_ignore_case(s[0], s[-1])
middle = ispalindrome(s[1:-1])
return ends and middle

Recursive Functions and Helpers

def ispalindrome?(s):

Case of characters is ignored

if len(s) < 2:
. peturn True

"""Returns: True if s is a palindrome

Use helper functions!

* Pull out anything not
part of the recursion

* Keeps your code simple
and easy to follow

middle = ispalindrome(s[1:-1])
return ends and middle

def equals_ignore_case(a, b):

Halves not the same; not divide and conquer
ends 4 equals_ignore_case(s[0], s[-1])

"""Returns: True if a and b are same ignoring case"""

return a.upper() == b.upper()

Example: More Palindromes

def ispalindromed(s):
"""Returns: True if 8 is a palindrome
Case of characters and non-letters ignored."""

return ispalindrome2(depunct(s))

def depunct(s):
"""Returns: s with non-letters removed"""
ifg=="
- return s Use helper functions!
Combine left and right * Sometimes the helper is
if s[0] in string.letters: a recursive function
- return s[0]+depunct(s[1:]) - Allows you break up
Ignore left if it is not a letter problem in smaller parts
return depunct(s[1:])

“Turtle” Graphics: Assignment A4

Turn Draw Line

&

‘
o«

Move Change Color

o o
o o

Example: Space Filling Curves

Challenge

* Draw a curve that
= Starts in the left corner
* Ends in the right corner
= Touches every grid point

= Does not touch or cross
itself anywhere

O S O e Useful for analysis of
Starts Ends 2-dimensional data
Here Here

Hilbert’s Space Filling Curve

Hilbert(1):
211 110€T I_I

Hilbert(2): (‘ “l

Hilbert(n) . H(n-1) H(n-1)
down down

H(n-1)
right

Hilbert’s Space Filling Curve

Basic Idea

Given a box

Draw 20 X 2n
grid 1in box

Trace the curve

As n goes to o,
curve fills box

o

ey

bty

Gau
o
o
noenSen

£

PRI

045, 6A0) HBThGa i

VaEY Boeg Yasyoy

e ?féﬂ‘gﬁp
Pnoenbe5eng nboe Sen enbe58nsens
g "dag TRED G el Eﬂb“
e
%ﬁmﬁ it e a0 b katacy
B250 o et L

facvia ol

-

u25upg

b3

P!
QUaSyEggg
S10a0a

ie)
25

