
Recursion

Module 17

Motivation for Video

• This series is not about a control structure
• Recursion: a programming technique

§ Uses techniques you know in an usual way
§ Duplicates the iteration of for and while
§ Exists because it is often more efficient

• It is a very advanced topic
§ You will study this all four years of a CS program
§ We are not expecting you to master this
§ We just want you to understand the foundations

Recursive Definition

• A definition defined in terms of itself
PIP

§ Tool for installing Python packages
§ PIP stands for “PIP Installs Packages”

• Sounds like a circular definition
§ The example above is
§ But need not be in right circumstances

Example: Factorial

• Non-recursive definition (n an int >= 0):
n! = n × n-1 ×… × 2 × 1
0! = 1

• Refactor top formula as:
n! = n (n-1 ×… × 2 × 1)

• Recursive definition:
n! = n (n-1)!
0! = 1

for n > 0 Recursive case
Base case

Example: Fibonnaci

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
a0 a1 a2 a3 a4 a5 a6

§ Refer to element at position n as an
§ Get the next element by adding previous two

• Recursive definition:
§ an = an-1 + an-2 Recursive Case
§ a0 = 1 Base Case
§ a1 = 1 (another) Base Case

Example: Fibonnaci

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
a0 a1 a2 a3 a4 a5 a6

§ Refer to element at position n as an
§ Get the next element by adding previous two

• Recursive definition:
§ an = an-1 + an-2 Recursive Case
§ a0 = 1 Base Case
§ a1 = 1 (another) Base Case

While recursion may be weird

it is well-defined and not circular

Recursive Functions

• A function that calls itself
§ Inside of body there is a call to itself
§Very natural for recursive math defs

• Recall: Factorial
§n! = n (n-1)! Recursive Case
§0! = 1 Base Case

Factorial as a Recursive Function

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

• n! = n (n-1)!
• 0! = 1

What happens if there is no base case?

Recursive case

Base case(s)

Factorial and Call Frames

Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci an
Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
fibonacci(n-2))

• an = an-1 + an-2
• a0 = 1
• a1 = 1

Recursive case

Base case(s)

Fibonacci: # of Frames vs. # of Calls

• Fibonacci is very inefficient.
§ fib(n) has a stack that is always ≤ n
§ But fib(n) makes a lot of redundant calls

fib(5)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(0)

fib(0)

fib(1)

fib(1)

fib(3)

fib(2) fib(1)

fib(0)fib(1)

Path to end =
the call stack

Fibonacci: # of Frames vs. # of Calls

• Fibonacci is very inefficient.
§ fib(n) has a stack that is always ≤ n
§ But fib(n) makes a lot of redundant calls

fib(5)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(0)

fib(0)

fib(1)

fib(1)

fib(3)

fib(2) fib(1)

fib(0)fib(1)

Path to end =
the call stack

Recursion is not the best way,

but it is the easiest way

Recursion vs Iteration

• Recursion is provably equivalent to iteration
§ Iteration includes for-loop and while-loop (later)
§ Anything can do in one, can do in the other

• But some things are easier with recursion
§ And some things are easier with iteration

• Will not teach you when to choose recursion
§ This is a topic for more advanced courses

• But we will cover one popular use case

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data

string or tuple (something slicable)

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

Divide and Conquer Example

Count the number of 'e's in a string:

p e nn e

Two 'e's

p e nn e

One 'e' One 'e'

Divide and Conquer Example

Count the number of 'e's in a string:

p e nn e

Two 'e's

p e nn e

Zero 'e's Two 'e's

Often more than one way to break up

Divide and Conquer Example

Remove all spaces from a string:

a b c

a b c

a b c

Divide and Conquer Example

Remove all spaces from a string:

a b c

a b c

a b cWill see how to implement next

Three Steps for Divide and Conquer

1. Decide what to do on “small” data
§ Some data cannot be broken up
§ Have to compute this answer directly

2. Decide how to break up your data
§ Both “halves” should be smaller than whole
§ Often no wrong way to do this (next lecture)

3. Decide how to combine your answers
§ Assume the smaller answers are correct
§ Combining them should give bigger answer

Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0

p e nn e

0 2+

s[0] s[1:]

Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

Base Case

Recursive
Case

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

1. Decide what to do on “small” data
§ If it is the empty string, nothing to do

if s == '':
return s

§ If it is a single character, delete it if a blank
if s == ' ': # There is a space here

return '' # Empty string
else:

return s

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

2. Decide how to break it up
left = deblank(s[0]) # A string with no blanks
right = deblank(s[1:]) # A string with no blanks

3. Decide how to combine the answer
return left+right # String concatenation

Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left+right

Handle small data

Break up the data

Combine answers

Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left+right

Handle small data

Break up the data

Combine answers

Following the Recursion

a b cdeblank

Following the Recursion

a b cdeblank

a b cdeblank

Following the Recursion

a b c

a

deblank

a b cdeblank

b cdeblank

Following the Recursion

a b c

a

deblank

a b cdeblank

b cdeblank

b cdeblank

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

cb✗

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

cb✗
cba

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c✗
cb

cb✗
cba

cba✗

Following the Recursion

a b c

a

b

c c

c

cb

cb

cba

cba

cba

✗

✗

✗

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

An Observation

• Divide & Conquer works in phases
§ Starts by splitting the data
§ Gets smaller and smaller
§ Until it reaches the base case

• Only then does it give an answer
§ Gives answer on the small parts

• Then glues all of them back together
§ Glues as the call frames are erased

Recursion vs For-Loop

• Think about our for-loop functions
§ For-loop extract one element at a time
§ Accumulator gathers the return value

• When we have a recursive function
§ The recursive step breaks into single elements
§ The return value IS the accumulator
§ The final step combines the return values

• Divide-and-conquer same as loop+accumulator

Breaking Up Recursion

• D&C requires that we divide the data
§ Often does not matter how divide
§ So far, we just pulled off one element
§ Example: 'penne' to 'p' and 'enne'

• Can we always do this?
§ It depends on the combination step
§ Want to divide to make combination easy

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

5 341267

Approach 1

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

5 341267

Approach 1

341,267

commafy

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

5 341267

Approach 1

341,267

commafy

5

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

5341 267

Approach 2

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

5341 267

Approach 2

5,341

commafy

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

5 341267

Approach 1

341,267

commafy

5 ,

Always? When?

5341 267

Approach 2

5,341

commafy

267

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""

5 341267

341,267,

commafy

5341

5

267

5,341 , 267

commafy

Always? When? Always!

Approach 1 Approach 2

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'
Precondition: s represents a non-negative int"""
1. Handle small data.
if len(s) <= 3:

return s

2. Break into two parts
left = commafy(s[:-3])
right = s[-3:] # Small part on RIGHT

3. Combine the result
return left + ',' + right

Base Case

Recursive
Case

More Reasons to be Careful

• Does division only affect code complexity?
§ Does it matter if we are “good” at coding?
§ What if also affects performance?

• Think about the number of recursive calls
§ Each call generates a call frame
§ Have to execute steps in definition (again)
§ So more calls == slower performance

• Want to reduce number of recursive calls

How to Break Up a Recursive Function?

def exp(b, c)
"""Returns: bc
Precondition: b a float, c ≥ 0 an int"""

Approach 1 Approach 2

12256 = 12 × (12255)

Recursive

12256 = (12128) × (12128)

Recursive Recursive

bc = b × (bc-1) bc = (b×b)c/2 if c even

Raising a Number to an Exponent

Approach 1

def exp(b, c)
"""Returns: bc
Precond: b a float, c ≥ 0 an int"""
b0 is 1
if c == 0:

return 1

bc = b(bc-1)
left = b
right = exp(b,c-1)

return left*right

Approach 2

def exp(b, c)
"""Returns: bc
Precond: b a float, c ≥ 0 an int"""
b0 is 1
if c == 0:

return 1

c > 0
if c % 2 == 0:

return exp(b*b,c//2)

return b*exp(b*b,(c-1)//2)

Raising a Number to an Exponent

Approach 1

def exp(b, c)
"""Returns: bc
Precond: b a float, c ≥ 0 an int"""
b0 is 1
if c == 0:

return 1

bc = b(bc-1)
left = b
right = exp(b,c-1)

return left*right

Approach 2

def exp(b, c)
"""Returns: bc
Precond: b a float, c ≥ 0 an int"""
b0 is 1
if c == 0:

return 1

c > 0
if c % 2 == 0:

return exp(b*b,c//2)

return b*exp(b*b,(c-1)//2)

rightleft

rightleft

Raising a Number to an Exponent

def exp(b, c)
"""Returns: bc
Precond: b a float, c ≥ 0 an int"""
b0 is 1
if c == 0:

return 1

c > 0
if c % 2 == 0:

return exp(b*b,c//2)

return b*exp(b*b,(c-1)//2)

c # of calls
0 0
1 1
2 2
4 3
8 4
16 5
32 6
2n n + 1

32768 is 215
b32768 needs only 215 calls!

Recursion and Objects

• Class Person (person.py)
§ Objects have 3 attributes
§ name: String
§ mom: Person (or None)
§ dad: Person (or None)

• Represents the “family tree”
§ Goes as far back as known
§ Attributes mom and dad

are None if not known

• Constructor: Person(n,m,d)
• Or Person(n) if no mom, dad

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

Recursion and Objects

def num_ancestors(p):
"""Returns: num of known ancestors
Pre: p is a Person"""
1. Handle small data.
No mom or dad (no ancestors)

2. Break into two parts
Has mom or dad
Count ancestors of each one
(plus mom, dad themselves)

3. Combine the result

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

11 ancestors

Recursion and Objects

def num_ancestors(p):
"""Returns: num of known ancestors
Pre: p is a Person"""
1. Handle small data.
if p.mom == None and p.dad == None:

return 0

2. Break into two parts
moms = 0
if not p.mom == None:

moms = 1+num_ancestors(p.mom)
dads = 0
if not p.dad== None:

dads = 1+num_ancestors(p.dad)

3. Combine the result
return moms+dads

John Sr. Pamela

Eva??? Dan Heather

John Jr.

??? ???

Jane Robert Ellen

John III Alice

John IV

11 ancestors

Is All Recursion Divide and Conquer?

• Divide and conquer implies two halves “equal”
§ Performing the same check on each half
§ With some optimization for small halves

• Sometimes we are given a recursive definition
§ Math formula to compute that is recursive
§ String definition to check that is recursive
§ Picture to draw that is recursive
§ Example: n! = n (n-1)!

• In that case, we are just implementing definition

have to be the same

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome

• Example:

AMANAPLANACANALPANAMA

• Function to Implement:
def ispalindrome(s):

"""Returns: True if s is a palindrome"""

has to be a palindrome

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome
def ispalindrome(s):

"""Returns: True if s is a palindrome"""
if len(s) < 2:

return True

Halves not the same; not divide and conquer
ends = s[0] == s[-1]
middle = ispalindrome(s[1:-1])
return ends and middle

Recursive case

Base case

Recursive
Definition

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
§ its first and last characters are equal, and
§ the rest of the characters form a palindrome
def ispalindrome(s):

"""Returns: True if s is a palindrome"""
if len(s) < 2:

return True

Halves not the same; not divide and conquer
ends = s[0] == s[-1]
middle = ispalindrome(s[1:-1])
return ends and middle

Recursive case

Base case

But what if we
want to deviate?

Recursive Functions and Helpers

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2:

return True
Halves not the same; not divide and conquer
ends = equals_ignore_case(s[0], s[-1])
middle = ispalindrome(s[1:-1])
return ends and middle

Recursive Functions and Helpers

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2:

return True
Halves not the same; not divide and conquer
ends = equals_ignore_case(s[0], s[-1])
middle = ispalindrome(s[1:-1])
return ends and middle

Recursive Functions and Helpers

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2:

return True
Halves not the same; not divide and conquer
ends = equals_ignore_case(s[0], s[-1])
middle = ispalindrome(s[1:-1])
return ends and middle

def equals_ignore_case(a, b):
"""Returns: True if a and b are same ignoring case"""
return a.upper() == b.upper()

Use helper functions!
• Pull out anything not

part of the recursion
• Keeps your code simple

and easy to follow

Example: More Palindromes

def ispalindrome3(s):
"""Returns: True if s is a palindrome
Case of characters and non-letters ignored."""
return ispalindrome2(depunct(s))

def depunct(s):
"""Returns: s with non-letters removed"""
if s == '':

return s
Combine left and right
if s[0] in string.letters:

return s[0]+depunct(s[1:])
Ignore left if it is not a letter
return depunct(s[1:])

Use helper functions!
• Sometimes the helper is

a recursive function
• Allows you break up

problem in smaller parts

“Turtle” Graphics: Assignment A4

Turn

Move Change Color

Draw Line

.

.

.

.

.

.

.

.

Example: Space Filling Curves

• Draw a curve that
§ Starts in the left corner
§ Ends in the right corner
§ Touches every grid point
§ Does not touch or cross

itself anywhere

• Useful for analysis of
2-dimensional data

Challenge

Starts
Here

Ends
Here

Hilbert(1):

Hilbert(2):

Hilbert(n): H(n-1)
down

H(n-1)
down

H
(n-1)
left

H
(n

-1
)

rig
ht

Hilbert’s Space Filling Curve

.

.

.

.

.

.

.

.

2n

2n

Hilbert’s Space Filling Curve

• Given a box
• Draw 2n×2n

grid in box
• Trace the curve
• As n goes to ∞,

curve fills box

Basic Idea

