Module 17

Recursion

Motivation for Video

- This series is not about a control structure
- Recursion: a programming technique
- Uses techniques you know in an usual way
- Duplicates the iteration of for and while
- Exists because it is often more efficient
- It is a very advanced topic
- You will study this all four years of a CS program
- We are not expecting you to master this
- We just want you to understand the foundations

Recursive Definition

- A definition defined in terms of itself
- Example: PIP
- Tool for installing Python packages
- PIP stands for "PIP Installs Packages"
- Sounds like a circular definition
- The example above is
- But need not be in right circumstances

Example: Factorial

- Non-recursive definition (n an int $>=0$): $\mathrm{n}!=\mathrm{n} \times \mathrm{n}-1 \times \ldots \times 2 \times 1$ $0!=1$
- Refactor top formula as:
$\mathrm{n}!=\mathrm{n}(\mathrm{n}-1 \times \ldots \times 2 \times 1)$
- Recursive definition: $\mathrm{n}!=\mathrm{n}(\mathrm{n}-1)$! for $\mathrm{n}>0$ Recursive case $0!=1$ Base case

Example: Fibonnaci

- Sequence of numbers: $1,1,2,3,5,8,13, \ldots$ $a_{0} \quad a_{1} \quad a_{2} \quad a_{3} \quad a_{4} \quad a_{5} \quad a_{6}$
- Refer to element at position n as a_{n}
- Get the next element by adding previous two
- Recursive definition:
- $a_{n}=a_{n-1}+a_{n-2} \quad$ Recursive Case
- $a_{0}=1$

Base Case

- $a_{1}=1$
(another) Base Case

Example: Fibonnaci

- Sequence of numbers: $1,1,2,3,5,8,13, \ldots$

$$
\begin{array}{lllllll}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6}
\end{array}
$$

- Refer to element at nosition

While recursion may be weird it is well-defined and not circular

- F

wcursive Case

- $a_{0}=1 \quad$ Base Case
- $a_{1}=1 \quad$ (another) Base Case

Recursive Functions

- A function that calls itself
- Inside of body there is a call to itself
- Very natural for recursive math defs
- Recall: Factorial
- n ! $=\mathrm{n}(\mathrm{n}-1)$!
Recursive Case
- $0!=1$
Base Case

Factorial as a Recursive Function

def factorial(n):
"""Returns: factorial of n.
Pre: $\mathrm{n} \geq 0$ an int"""
if $\mathrm{n}==0$:
return 1
Base case(s)
return $n *$ factorial($n-1$) Recursive case

What happens if there is no base case?

Factorial and Call Frames

Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci $a_{\text {n }}$
Precondition: $\mathrm{n} \geq 0$ an int"""
if $\mathrm{n}<=1$:
return 1
return (fibonacci(n-1)+ fibonacci(n-2))

- $a_{n}=a_{n-1}+a_{n-2}$
- $a_{0}=1$
- $a_{1}=1$

Base case(s)

Recursive case

Fibonacci: \# of Frames vs. \# of Calls

- Fibonacci is very inefficient.
- fib (n) has a stack that is always $\leq n$
- But fib (n) makes a lot of redundant calls

Fibonacci: \# of Frames vs. \# of Calls

- Fibonacci is very inefficient.
- fib (n) has a stack that is always $\leq n$
- But fib (n) makes a lot of red,

Recursion is not the best way,
but it is the easiest way

Recursion vs Iteration

- Recursion is provably equivalent to iteration
- Iteration includes for-loop and while-loop (later)
- Anything can do in one, can do in the other
- But some things are easier with recursion
- And some things are easier with iteration
- Will not teach you when to choose recursion
- This is a topic for more advanced courses
- But we will cover one popular use case

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data

string or tuple (something slicable)

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

Divide and Conquer Example

Count the number of 'e's in a string:

Divide and Conquer Example

Count the number of 'e's in a string:

Divide and Conquer Example

Remove all spaces from a string:

Divide and Conquer Example

Remove all spaces from a string:

Will see how to implement next

b
c

Three Steps for Divide and Conquer

1. Decide what to do on "small" data

- Some data cannot be broken up
- Have to compute this answer directly

2. Decide how to break up your data

- Both "halves" should be smaller than whole
- Often no wrong way to do this (next lecture)

3. Decide how to combine your answers

- Assume the smaller answers are correct
- Combining them should give bigger answer

Divide and Conquer Example

def num_es(s):
"""Returns: \# of 'e's in s"""
\# l. Handle small data
if $\mathrm{s}==$ ":
return 0
elif len(s) == 1 :
return 1 if $s[0]==$ 'e' else 0
\# 2. Break into two parts
left = num_es(s[0]) right = num_es(s[l:])
\# 3. Combine the result
return left+right
"Short-cut" for
if $s[0]==' e$ ':
return 1
else:
return 0
$\mathrm{s}[0]$

$0+2$

Divide and Conquer Example

def num_es(s):
"""Returns: \# of 'e's in s"""
\# 1. Handle small data
if $s==$ ":
return 0
elif $\operatorname{len}(\mathrm{s})=\mathrm{l}$:
return 1 if s[0] == 'e' else 0

\# 2. Break into two parts
left = num_es(s[0]) right = num_es(s[1:])
\# 3. Combine the result return left+right

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

1. Decide what to do on "small" data

- If it is the empty string, nothing to do if $\mathrm{s}==$ ": return s
- If it is a single character, delete it if a blank if $\mathrm{s}==$ ' ': \# There is a space here
return " \# Empty string else:
return s

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""
2. Decide how to break it up left = deblank(s[0]) \# A string with no blanks right = deblank(s[l:]) \# A string with no blanks
3. Decide how to combine the answer return left+right \# String concatenation

Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if $\mathrm{s}==$ ":
return s
elif len(s) == l:
return " if $s[0]==$ ' else s
left $=\operatorname{deblank}(\mathrm{s}[0])$
right $=\operatorname{deblank}(\mathrm{s}[1:])$
return left+right

Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if $\mathrm{s}==$ ":
return s
elif len(s) == l:
return " if $s[0]==$ ' else s
left $=\operatorname{deblank}(\mathrm{s}[0])$
right $=\operatorname{deblank}(\mathrm{s}[1:])$
return left+right

Following the Recursion

An Observation

- Divide \& Conquer works in phases
- Starts by splitting the data
- Gets smaller and smaller
- Until it reaches the base case
- Only then does it give an answer
- Gives answer on the small parts
- Then glues all of them back together
- Glues as the call frames are erased

Recursion vs For-Loop

- Think about our for-loop functions
- For-loop extract one element at a time
- Accumulator gathers the return value
- When we have a recursive function
- The recursive step breaks into single elements
- The return value IS the accumulator
- The final step combines the return values
- Divide-and-conquer same as loop+accumulator

Breaking Up Recursion

- D\&C requires that we divide the data
- Often does not matter how divide
- So far, we just pulled off one element
- Example: 'penne' to 'p' and 'enne'
- Can we always do this?
- It depends on the combination step
- Want to divide to make combination easy

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

Approach 2 5341

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

Approach 2

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

Approach 2

$$
5,341
$$

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""

Approach 1

Approach 2

How to Break Up a Recursive Function?

def commafy(s):
"""Returns: string with commas every 3 digits
e.g. commafy('5341267') = '5,341,267'

Precondition: s represents a non-negative int"""
\# 1. Handle small data.
if $\operatorname{len}(\mathrm{s})<=3$:
return s
\# 2. Break into two parts
left $=$ commafy (s[:-3])
right $=\mathrm{s}[-3:]$ \# Small part on RIGHT
\# 3. Combine the result
return left + ',' + right

More Reasons to be Careful

- Does division only affect code complexity?
- Does it matter if we are "good" at coding?
- What if also affects performance?
- Think about the number of recursive calls
- Each call generates a call frame
- Have to execute steps in definition (again)
- So more calls == slower performance
- Want to reduce number of recursive calls

How to Break Up a Recursive Function?

def $\exp (b, c)$
"""Returns: bc
Precondition: b a float, $c \geq 0$ an int"""

Approach 1

Approach 2

$$
12^{256}=12 \times(\underbrace{12^{255}}_{\uparrow}
$$

$$
b^{c}=b \times\left(b^{c-1}\right)
$$

$b^{c}=(b \times b)^{c / 2}$ if c even

Raising a Number to an Exponent

Approach 1

Approach 2

def $\exp (b, c)$
"""Returns: bc
Precond: b a float, $\mathrm{c} \geq 0$ an int""" \# b^{0} is 1
if $\mathrm{c}==0$:
return 1
$\# \mathrm{~b}^{\mathrm{c}}=\mathrm{b}\left(\mathrm{b}^{\mathrm{c}-1}\right)$
left $=\mathrm{b}$
right $=\exp (b, c-1)$
return left*right
def $\exp (b, c)$
"""Returns: bc
Precond: b a float, $\mathrm{c} \geq 0$ an int"""
\# b^{0} is 1
if $\mathrm{c}==0$:
return 1
\# c > 0
if $\mathrm{c} \% 2=0$:
return $\exp \left(b^{*} \mathrm{~b}, \mathrm{c} / / 2\right)$
return $b^{*} \exp \left(b^{*} b,(c-1) / / 2\right)$

Raising a Number to an Exponent

Approach 1

Approach 2

def $\exp (b, c)$
"""Returns: bc
Precond: b a float, $\mathrm{c} \geq 0$ an int"""
\# b^{0} is 1
if $\mathrm{c}==0$:
return 1
$\# \mathrm{~b}^{\mathrm{c}}=\mathrm{b}\left(\mathrm{b}^{\mathrm{c}-1}\right)$
left $=\mathrm{b}$
right $=\exp (b, c-1)$
return left*right
def $\exp (b, c)$
"""Returns: bc
Precond: b a float, $\mathrm{c} \geq 0$ an int"""
\# b^{0} is 1
if $\mathrm{c}==0$:
return 1

return $\exp \left(b^{*} \mathrm{~b}, \mathrm{c} / / 2\right)$
return $b^{*} \exp (b * b,(c-1) / / 2)$
left
right

Raising a Number to an Exponent

def $\exp (b, c)$

```
"""Returns: b
Precond: b a float, \(\mathrm{c} \geq 0\) an int""" \# \(b^{0}\) is 1
if \(\mathrm{c}==0\) :
return 1
```

\# c>0
if $\mathrm{c} \% 2==0$: return $\exp \left(b^{*} \mathrm{~b}, \mathrm{c} / / 2\right)$
return $\mathrm{b}^{*} \exp \left(\mathrm{~b}^{*} \mathrm{~b},(\mathrm{c}-1) / / 2\right)$

\mathbf{c}	\# of calls
0	0
1	1
2	2
4	3
8	4
16	5
32	6
2^{n}	$\mathrm{n}+1$

[^0]
Recursion and Objects

- Class Person (person.py)
- Objects have 3 attributes
- name: String
- mom: Person (or None)
- dad: Person (or None)
- Represents the "family tree"
- Goes as far back as known
- Attributes mom and dad are None if not known
- Constructor: Person(n,m,d)
- Or Person(n) if no mom, dad

Recursion and Objects

def num_ancestors(p):
"""Returns: num of known ancestors
Pre: p is a Person"""
\# l. Handle small data.
\# No mom or dad (no ancestors)
\# 2. Break into two parts
\# Has mom or dad
\# Count ancestors of each one
\# (plus mom, dad themselves)
\# 3. Combine the result

Recursion and Objects

def num_ancestors(p):
"""Returns: num of known ancestors
Pre: p is a Person"""
\# l. Handle small data.
if p.mom $==$ None and p.dad $==$ None: return 0
\# 2. Break into two parts
$\mathrm{moms}=0$
if not p.mom $==$ None:
moms = l+num_ancestors(p.mom)
dads $=0$
if not p.dad== None:
dads = l+num_ancestors(p.dad)
\# 3. Combine the result
return moms+dads

Is All Recursion Divide and Conquer?

- Divide and conquer implies two halves "equal"
- Performing the same check on each half
- With some optimization for small halves
- Sometimes we are given a recursive definition
- Math formula to compute that is recursive
- String definition to check that is recursive
- Picture to draw that is recursive
- Example: n! = n (n-1)!
- In that case, we are just implementing definition

Example: Palindromes

- String with ≥ 2 characters is a palindrome if:
- its first and last characters are equal, and
- the rest of the characters form a palindrome
- Example:

has to be a palindrome
- Function to Implement:
def ispalindrome(s):
"""Returns: True if s is a palindrome"""

Example: Palindromes

- String with ≥ 2 characters is a palindrome if:
- its first and last characters are equal, and
- the rest of the characters form a palindrome def ispalindrome(s):

```
    """Returns: True if s is a palindrome"""
    if len(s) < 2:
        return True
    Base case
```

Recursive Definition
\# Halves not the same; not divide and conquer
ends $=\mathrm{s}[0]=\mathrm{s}[-1]$
middle $=$ ispalindrome(s[l:-1])
Recursive case

Example: Palindromes

- String with ≥ 2 characters is a palindrome if:
- its first and last characters are equal, and
- the rest of the characters form But what if we def ispalindrome(s):
"""Returns: True if s is a palindrom
want to deviate? if len(s) < 2: return True

Base case

\# Halves not the same; not divide and conquer
ends $=\mathrm{s}[0]=\mathrm{s}[-1]$
middle $=$ ispalindrome(s[l:-1])
Recursive case

Recursive Functions and Helpers

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2 :
return True
\# Halves not the same; not divide and conquer
ends = equals_ignore_case(s[0], s[-1])
middle $=$ ispalindrome(s[l:-1])
return ends and middle

Recursive Functions and Helpers

def ispalindrome2(s):
"""Returns: True if s is a palindrome
Case of characters is ignored."""
if len(s) < 2 :
return True
\# Halves not the same; not divide and conquer
ends = equals_ignore_case(s[0], s[-1])
middle $=$ ispalindrome(s[l:-1])
return ends and middle

Recursive Functions and Helpers

def ispalindrome2(s):
"""Returns: True if s is a palindrome Case of characters is ignored """ if len(s) < 2: return True
\# Halves not the same; not divide and conquer
ends = equals_ignore_case(s[0], s[-1])
middle = ispalindrome(s[l:-1])
return ends and middle
def equals_ignore_case(a, b):
"""Returns: True if a and b are same ignoring case"""
return a.upper() == b.upper()

Example: More Palindromes

def ispalindrome3(s):
"""Returns: True if s is a palindrome
Case of characters and non-letters ignored."""
return ispalindrome2(depunct(s))
def depunct(s):
"""Returns: s with non-letters removed"""
if $\mathrm{s}==$ ":
return s
\# Combine left and right
if $\mathrm{s}[0]$ in string.letters:
return s[0]+depunct(s[l:])
\# Ignore left if it is not a letter
return depunct(s[1:])

Use helper functions!

- Sometimes the helper is a recursive function
- Allows you break up problem in smaller parts

"Turtle" Graphics: Assignment A4

Move

Change Color

Example: Space Filling Curves

Challenge

- Draw a curve that
- Starts in the left corner
- Ends in the right corner
- Touches every grid point
- Does not touch or cross itself anywhere
- Useful for analysis of 2-dimensional data

Hilbert's Space Filling Curve

2^{n}

Hilbert(1):

Hilbert(2):

Hilbert(n):

Hilbert's Space Filling Curve

Basic Idea

- Given a box
- Draw $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ grid in box
- Trace the curve
- As n goes to ∞, curve fills box

[^0]: 32768 is 215
 b^{32768} needs only 215 calls!

