
For-Loops

Module 16

Motivating Example

def print_each(text):
"""Prints each character of text on a line by itself

Example: print_each('abc') displays
a
b
c

Parameter text: The string to split up
Precondition: text is a string"""

A First Attempt at the Function

def print_each(text):
"""Prints each character of text on a line by itself

Precondition: text is a string """
print(text[0])
print(text[1])
…
print(text[len(text)-1])

Unfortunately
not valid Python

The Problem

• Strings are potentially unbounded
§ Number of characters inside them is not fixed
§ Functions must handle different lengths
§ Example: print_each('a') vs. print_each('abcdfgh')

• Cannot process with fixed number of lines
§ Each line of code can handle at most one element
§ What if # of elements > # of lines of code?

• We need a new control structure

The For-Loop

Create local var x
x = text[0]
print(x)
x = text[1]
print(x)
…
x = text[len(text)-1]
print(x)

Write as a for-loop
for x in text:

print(x)

• iterable: text
• loop variable: x
• body: print(x)

Key Concepts

The For-Loop

Create local var x
x = text[0]
print(x)
x = text[1]
print(x)
…
x = text[len(text)-1]
print(x)

Write as a for-loop
for x in text:

print(x)

• iterable: text
• loop variable: x
• body: print(x)

Key Concepts

Iterable can be a string, tuple or list

Executing a For-Loop

The for-loop:

for x in text:
print(x)

• iterable: text
• loop variable: x
• body: print(x)

text has
more chars

put next
char in x

True

False
print(x)

For Loops and Call Frames

def print_each(text):
"""Prints each char of text
Pre: text is a string"""
for x in thelist:

print(x)

print_each(word):

word 'ab'

print_each

text

4

'ab'4
5

For Loops and Call Frames

def print_each(text):
"""Prints each char of text
Pre: text is a string"""
for x in thelist:

print(x)

print_each(word):

word 'ab'

text

5

'ab'4
5 x 'a'

print_each

For Loops and Call Frames

def print_each(text):
"""Prints each char of text
Pre: text is a string"""
for x in thelist:

print(x)

print_each(word):

word 'ab'

text

4

'ab'4
5 x 'a'

Loop back
to line 4

print_each

For Loops and Call Frames

def print_each(text):
"""Prints each char of text
Pre: text is a string"""
for x in thelist:

print(x)

print_each(word):

word 'ab'

text

5

'ab'4
5 x 'b'

Next element stored in x.
Previous value is lost.

print_each

For Loops and Call Frames

def print_each(text):
"""Prints each char of text
Pre: text is a string"""
for x in thelist:

print(x)

print_each(word):

word 'ab'

text

4

'ab'4
5 x 'b'

Loop back
to line 4

print_each

For Loops and Call Frames

def print_each(text):
"""Prints each char of text
Pre: text is a string"""
for x in thelist:

print(x)

print_each(word):

word 'ab'

text 'ab'4
5 x 'b'

Loop is completed.
Nothing new put in x.

print_each

For Loops and Call Frames

def print_each(text):
"""Prints each char of text
Pre: text is a string"""
for x in thelist:

print(x)

print_each(word):

word 'ab'

4
5

ERASE WHOLE FRAME

Example: Summing Elements of a Tuple

def sum(tups):
"""Returns: the sum of all elements in tups
Precondition: tups is a tuple of all numbers
(either floats or ints)"""
pass # Stub to be implemented

Remember our approach:
Outline first; then implement

Example: Summing Elements of a Tuple

def sum(tups):
"""Returns: the sum of all elements in tups
Precondition: tups is a tuple of all numbers
(either floats or ints)"""
Create a variable to hold result (start at 0)
Add each tuple element to variable
Return the variable

Example: Summing Elements of a Tuple

def sum(tups):
"""Returns: the sum of all elements in tups
Precondition: tups is a tuple of all numbers
(either floats or ints)"""
result = 0

for x in tups:
result = result + x

return result

• iterable: tups
• loop variable: x
• body: result=result+x

Accumulator

For Loops and Conditionals

def num_ints(tups):
"""Returns: the number of ints in tups
Precondition: tups is a tuple of any mix of types"""
Create a variable to hold result (start at 0)
for each element in the tuple…

check if it is an int
add 1 if it is

Return the variable

For Loops and Conditionals

def num_ints(tups):
"""Returns: the number of ints in tups
Precondition: tups is a tuple of any mix of types"""
result = 0
for x in tups:

if type(x) == int:
result = result+1

return result

Body

The Accumulator

• In a previous example saw the accumulator
§ Variable to hold a final (numeric) answer
§ For-loop added to variable at each step

• This is a common design pattern
§ Popular way to compute statistics
§ Counting, averaging, etc.

• It is not just limited to numbers
§ Works on every type that can be added
§ This means strings, lists and tuples!

Example: String-Based Accumulator

def despace(s):
"""Returns: s but with its spaces removed
Precondition: s is a string"""
Create an empty string accumulator
For each character x of s

Check if x is a space
Add it to accumulator if not

Example: String-Based Accumulator

def despace(s):
"""Returns: s but with its spaces removed
Precondition: s is a string"""
result = ''
for x in s:

if x != '':
result = result+x

return result

Example: String-Based Accumulator

def reverse(s):
"""Returns: copy with s with characters reversed.
Example: reverse('hello’) returns 'olleh'
Precondition: s is a (possibly empty string)"""
Create an empty tuple accumulator
For each character x of s

Add x to FRONT of accumulator

Example: String-Based Accumulator

def reverse(s):
"""Returns: copy with s with characters reversed.
Example: reverse('hello’) returns 'olleh'
Precondition: s is a (possibly empty string)"""
result = ''
for x in s:

result = x+result
return result

Example: List-Based Accumulator

def copy_add_one(lst):
"""Returns: copy with 1 added to every element
Precondition: lst is a list of all numbers
(either floats or ints)"""
Create an empty tuple accumulator
For each element x of lst

Add 1 to value of x
Add x to the accumulator

Example: List-Based Accumulator

def copy_add_one(lst):
"""Returns: copy with 1 added to every element
Precondition: lst is a list of all numbers
(either floats or ints)"""
copy = [] # accumulator
for x in lst:

x = x +1
copy = copy + [x]

return copy

Alternate Version

def copy_add_one(lst):
"""Returns: copy with 1 added to every element
Precondition: lst is a list of all numbers
(either floats or ints)"""
copy = [] # accumulator
for x in lst:

x = x+1
copy.append(x) # add to end of copy

return copy

Modifies
accumulator

The Comparison

• They appear to be the same
• But first is less efficient (TURN ARROWS OFF)

• List accums are preferable for large data

Motivation: Repeat a Number of Times

def hello(n):
"""Prints 'Hello World' n times
Precondition: n > 0 is an int."""
pass # Stub to be implemented

Idea: Use a For-Loop

def hello(n):
"""Prints 'Hello World' n times
Precondition: n > 0 is an int."""
lst = [1, 2, …, n]
for x in lst:

print('Hello World')

How do we
do this step?

The Range Iterable

range(x)

• Creates an iterable
§ Can be used in a for-loop
§ Makes ints (0, 1, ... x-1)

• But it is not a tuple!
§ A black-box for numbers
§ Entirely used in for-loop
§ Contents of folder hidden

Example

>>> range(3)
range(0,3)
>>> for x in range(3)
… print(x)
0
1
2

id2

alt id2 ?

Solving the Problem

def hello(n):
"""Prints 'Hello World' n times
Precondition: n > 0 is an int."""
for x in range(n):

print('Hello World')

Uses of Range

• Can convert to list
§ Remember: iterable!
>>> list(range(4))
[0, 1, 2, 3]

• Best for handling ints
§ Statistical calculations
§ Computing n samples

• Or fixed repeats

def sum_squares(n):
"""
Rets: sum of squares to n
Prec: n is int > 0
"""
total = 0
for x in range(n):

total = total + x*x

Accumulator

Two Main Variations

•range(a,b)
§ Generates (a,…,b-1)
§ Useful when do not want to start at 0
§ Requires that b > a

•range(a,b,n)
§ Generates (a,a+n,…,b-1)
§ “Counting by evens (or threes)”
§ n must be > 0

Motivation: Splitting by Position

def partition(s):
"""Returns: a list splitting s in two parts

The 1st element of the tuple is chars in even
positions (starting at 0), while the 2nd is odds.

Examples:
partition('abcde') is ['ace','bd']
partition('aabb') is ['ab', 'ab']

Precondition: s is a string."""
pass # Stub to be implemented

PseudoCode

def partition(s):
"""Returns: a list splitting s in two parts
Precondition: s is a string."""
Create accumulators for first & second parts
For each character in s

Determine if character is at odd or even pos
Add it to the correct accumulator

Return list with the two parts

Good Idea but Wrong

def partition(s):
"""Returns: a list splitting s in two parts
Precondition: s is a string."""
first = ''; second = ''
for x in s:

pos = s.find(x)
if pos % 2 == 0:

first = first + x
else:

second = second + x
return [first,second]

What to do if x
appears twice?

>>> partition('aabb’)
['aabb','']

Getting Positions

• We want the positions!
§ So loop over the positions, not elements
§ If have position, can access with s[pos]

• Notice that range(n) starts at 0
§ This is first position of a string/list/tuple

lst = [5, 2, 7, 1]
pos = [0, 1, 2, 3]

• So use range(len(lst))

The Correct Approach

def partition(s):
"""Returns: a list splitting s in two parts
Precondition: s is a string."""
first = ''
second = ''
for pos in range(len(s)):

if pos % 2 == 0:
first = first + s[pos]

else:
second = second + s[pos]

return [first,second]

Motivation: A Mutable Function

def add_one(lst):
"""(Procedure) Adds 1 to every element in the list
Precondition: lst is a list of all numbers
(either floats or ints)"""

• Accumulator pattern no longer relevant
§ Do not want to accumulate a new list
§ Want to modify the original list

• What is the right way to approach this?

A Motivating Function

def add_one(lst):
"""(Procedure) Adds 1 to every element in the list
Precondition: lst is a list of all numbers
(either floats or ints)"""
for x in lst:

x = x+1
procedure; no return

DOES NOT WORK!

We need to put the answer into lst

Modifying a Loop Variable is Unsafe!

• This is an infinite loop:

for x in lst:
lst.append(1)

• Best practices?
§ Never modify a loop var
§ Pick another iterable
§ Use that to modify first

Modifying the Contents of a List

def add_one(lst):
"""(Procedure) Adds 1 to every element in the list
Precondition: lst is a list of all numbers
(either floats or ints)"""
size = len(lst)
for k in range(size):

lst[k] = lst[k]+1
procedure; no return

WORKS!

Iterator of list
positions (safe)

Testing For-Loops

• Once again, we need code coverage
• But is automatic from Rule of Numbers

§ Rule of 1: Executes loop just once
§ Rule of 2: Executes loop many times
§ Rule of 0: Skips over loop entirely

• The hard part is what to do about lists
§ What if function is a mutable procedure?
§ What is the function is accidentally mutable?

• How do we have to adapt the test scripts?

Testing Immutable For-Loop

def copy_add_one(lst):
"""Returns: copy with 1 added to every element
Precondition: lst is a list of all numbers
(either floats or ints)"""
…

x = [1,2]
result = copy_add_one(x)
introcs.assert_equals([2,3],result)
introcs.assert_equals([1,2], x)

Verify the output
(the return value)

Check that it is not
accidentally mutable

Testing Mutable For-Loop

def add_one(lst):
"""(Procedure) Adds 1 to every element in the list
Precondition: lst is a list of all numbers
(either floats or ints)"""
…

x = [1,2]
result = add_one(x)
introcs.assert_equals([2,3],x)
introcs.assert_equals(None,result)

Verify the output
(modified argument)

Check that it is not
accidentally fruitful

Tuple Expansion

• Last use of lists/tuples is an advanced topic
§ But will see if read Python code online
§ Favored tool for data processing

• An Observation:
§ Function calls look like name + tuple
§ Why not pass a single argument: the tuple?

• Purpose of tuple expansion: *tuple
§ But only works in certain contexts

Tuple Expansion Example

>>> def add(x, y)
. . . """Returns x+y """
. . . return x+y
. . .
>>> a = (1,2)
>>> add(*a) # Slots each element of a into params
3
>>> a = (1,2,3) # Sizes much match up
>>> add(*a)
ERROR

Have to use in
function call

Also Works in Function Definition

Also Works in Function Definition

def max(*tup):
"""Returns the maximum element in tup

Param tup: The tuple of numbers
Precond: Each element of tup is an int or float"""
themax = None
for x in tup:

if themax == None or themax < x:
themax = x

return themax

Automatically
converts all

arguments to tuple

