
Sequences

Module 15

Motivation for this Video Series

• Strings are a very, very useful type
• But they are also very limited

§ Break everything into individual letters
§ What if we want to work with numbers?
§ Or if want to work with words, not letters?

• This is going to require a new type
§ Let’s look at what features strings have
§ See how to make them more general

Recall: String are Indexed

• s = 'abc d'

• Access chars with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[0:2] is 'ab' (no c)
§ s[2:] is 'c d'

• What are limitations?
• Slots: chars not words

§ Ex: 'Hello World'
§ Want word positions?
§ Needs many steps

• Cannot do numbers
§ Ex: '123, 456'
§ Only access digits

a b c d

0 1 2 3 4

Tuple: Sequence of Value

• x = (5, 6, 5, 9, 15, 23)

• Access values with []
§ x[0] is 5
§ x[4] is 15
§ x[0:2] is (5,6)
§ x[3:] is (9,15,23)

• Can put anything in it
§ (True, False)
§ ('Hello', 'World')

• Can mix-and-match
§ (True, 1)
§ ('Hello', 3)

5 6 5 9 15

0 1 2 3 4

23

5

Inside parens,
comma separated

Two Tricky Things about Tuples

• What about an empty tuple?
§ Empty String: ''
§ Empty Tuple: ()

• What about a one element tuple?
§ Incorrect: (4) <= This is 4
§ Correct: (4,)

• But otherwise similar to strings

Tuples and the Python Tutor

• Looks like an object
§ Folder with id

• But not mutable
§ Cannot change contents
§ Like a string

Tuples and the Python Tutor

• Looks like an object
§ Folder with id

• But not mutable
§ Cannot change contents
§ Like a string

(5, 6, 7, -2)x

OK!
(kinda)

Tuples Support String-like Operations

• Operation +: x1 + x2

§ Glues if x2 to end of x1

§ Called concatenation

§ Evaluates to a tuple

• Examples:
§ (1,2) + (3,4) is (1,2,3,4)

§ (1,2) + (3,) is (1,2,3)

§ (1,2) + () is (1,2)

• Operation in: x1 in x2

§ Tests if x1 “a value in” x2

§ Not a subsequence

§ Evaluates to a boolean

• Examples:
§ 5 in (5,6,9) is True

§ 2 in (5,6,9) is False

§ (5,6) in (5,6,9) is False

Built-In Tuple Functions

• The len function
§ Returns length (# of elements) of tuple
§ Example: len((1,2,3)) is 3

• The tuple function
§ Converts a value to a tuple
§ Can only be applied to iterable types
§ Right now: strings and tuples
§ Example: tuple('abc') is ('a', 'b', 'c')

Tuples Have Methods (Like Strings)

• Example: count
§ x.count(3) == 2
§ x.count(9) == 1
§ x.count(1) == 0
§ x.count(5) == 3

• Example: index
§ x.index(3) == 0
§ x.index(9) == 5
§ x.index(1) CRASHES
§ x.index(5) == 1

x = (3,5,3,5,5,9)

Just like string methods
with the same name

Tuples and Expressions

• Tuple parens () can
contain expressions

• Called a tuple expression
§ Python must evaluate it
§ Evaluates each expression
§ Puts the value in tuple

• Example:
>>> a = (1+2,3+4,5+6)
>>> a
(3, 7, 11)

• Execute the following:
>>> a = 5
>>> b = 7
>>> x = (a, b, a+b)

• What is x[2]?

10/8/19 Lists & Sequences 11

A: 'a+b'
B: 12
C: 57
D: ERROR
E: I don’t know

Tuples and Expressions

• Tuple parens () can
contain expressions

• Called a tuple expression
§ Python must evaluate it
§ Evaluates each expression
§ Puts the value in tuple

• Example:
>>> a = (1+2,3+4,5+6)
>>> a
(3, 7, 11)

• Execute the following:
>>> a = 5
>>> b = 7
>>> x = (a, b, a+b)

• What is x[2]?

10/8/19 Lists & Sequences 12

12

Lists are Almost the Same as Tuples

• x = [5, 6, 5, 9, 15, 23]

• Access values with []
§ x[0] is 5
§ x[4] is 15
§ x[0:2] is (5,6)
§ x[3:] is (9,15,23)

• Can put anything in it
§ [True, False]
§ ['Hello’, 3]

• Expressions eval first
>>> [1+2, 4*2]
[3, 8]

5 6 5 9 15

0 1 2 3 4

23

5

Inside brackets,
comma separated

Lists are Almost the Same as Tuples

• x = [5, 6, 5, 9, 15, 23]

• Access values with []
§ x[0] is 5
§ x[4] is 15
§ x[0:2] is (5,6)
§ x[3:] is (9,15,23)

• Can put anything in it
§ [True, False]
§ ['Hello’, 3]

• Expressions eval first
>>> [1+2, 4*2]
[3, 8]

5 6 5 9 15

0 1 2 3 4

23

5

Inside brackets,
comma separated

But singletons are easier: [3]

Lists Operations are the Same

• Operation +: x1 + x2

§ [1,2] + [3,4] is [1,2,3,4]

§ [1,2] + [3] is [1,2,3]

§ [1,2] + [] is [1,2]

• Functions same(ish)
§ len([1,2,3]) is 3
§ list('abc') is ['a', 'b', 'c']

• Operation in: x1 in x2

§ 5 in [5,6,9] is True

§ 2 in [5,6,9] is False

§ [5,6] in [5,6,9] is False

• Methods are same
§ [1,2,1].count(1) is 2
§ [1,2,1].index(2) is 1

List [] Can Contain Expressions

• Called a list expression (just as with a tuple)
§ Python must evaluate it
§ Evaluates each expression
§ Puts the value in tuple

• Example:
>>> a = [1+2,3+4,5+6]
>>> a
[3, 7, 11]

10/8/19 Lists & Sequences 16

Aren’t these redundant?

List, Tuples, Strings are Similar

• Strings, tuples, lists are all sequences
§ A classification of a group of types
§ Means a type that can be sliced

• They are also all iterables
§ Means there is an order to the elements
§ Can access elements one at a time in order

• But only lists are mutable
§ You can reach into the folder and change

Representing Lists

Wrong Correct

x = [5, 7, 4,-2]

id1x

id1

0
1
2
3

5
7
4
-2

[5, 6, 7, -2]x

Does not allow two
vars to reference
same list object Put list in

a “folder”

Unique tab
identifier

Variable
holds id

List Assignment

• Basic Syntax:
<var>[<index>] = <value>
§ Reassign at index
§ Affects folder contents
§ Variable is unchanged

• Tuples cannot do this
§ x = (5, 7, 4, -2)
§ x[1] = 8 ERROR
§ Tuples are immutable

• x = [5, 7,4,-2]

• x[1] = 8

-2

0 1 2 3

475

id1x

id1

0
1
2
3

5
7
4
-2

8

x

x 8

When Do We Need to Draw a Folder?

• When the value contains other values
§ This is essentially want we mean by ‘object’

• When the value is mutable

10/8/19 Lists & Sequences 20

Type Container? Mutable?
int No No
float No No
str Yes* No

Point3 Yes Yes
RGB Yes Yes
list Yes Yes

When Do We Need to Draw a Folder?

• When the value contains other values
§ This is essentially want we mean by ‘object’

• When the value is mutable

10/8/19 Lists & Sequences 21

Type Container? Mutable?
int No No
float No No
str Yes* No

Point3 Yes Yes
RGB Yes Yes
list Yes Yes

tuples are a “grey area”

List Variables are Object Variables

>>> x = [5,6,5,9]
>>> y = x
>>> id(x)
4422305480
>>> id(y)
4422305480
>>> y[1] = 8
>>> x
[5,8,5,9]

id2x

id2

0
1
2
3

5
6
5
9

list

id2y

x 8

However, List Slices Make Copies

x = [5, 6, 5, 9] y = x[1:3]

id2x

id5

0
1
2
3

5
6
5
9

list

id3y

id6

0
1

6
5

list

copy = new folder

This is Why Lists are Advanced!

• You must pay close attention to the folder
§ Sometimes have a copy, sometimes do not
§ Do not always want to modify the original
§ Reason degenerate slicing is useful: x[:]

• If in doubt use the Python Tutor
§ Lists are a major reason it is so useful

• But need to learn to work without

Lists Share Methods with Tuple

• index(value)
§ Return position of the value
§ ERROR if value is not there
§ x.index(9) evaluates to 3

• count(value)
§ Returns number of times value appears in list
§ x.count(5) evaluates to 2

x = [5, 6, 5, 9, 15, 23]

These are
immutable

methods

List Methods Can Alter the List

• append(value)
§ A procedure method, not a fruitful method
§ Adds a new value to the end of list
§ x.append(-1) changes the list to [5, 6, 5, 9, -1]

• insert(index, value)
§ Put the value into list at index; shift rest of list right
§ x.insert(2,-1) changes the list to [5, 6, -1, 5, 9,]

• sort() What do you think this does?

x = [5, 6, 5, 9]

Where To Learn About List Methods?

In the documentation!

Recall: Mutable Functions

• A mutable function alters an object parameter
§ Often a procedure; no return value
§ Possible because folders persist outside frame

• Lists are mutable objects too!
§ So we can make functions to alter them
§ One of main reasons to use lists over tuples

• Often for matters of efficiency
§ Changing a tuple requires a complete copy
§ Expensive if the tuple is large

swap(x, 3, 4)

Lists and Functions: Swap

1. def swap(b, h, k):
2. """ Swaps b[h] and b[k] in b
3. Precond: b is a mutable list,
4. h, k are valid positions"""
5. temp= b[h]
6. b[h]= b[k]
7. b[k]= temp

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

x id4
10/8/19 29Lists & Sequences

swap

b id4 h 3

k 4

5 0
1
2
3

5
4
7
6

4 5

Lists and Functions: Swap

1. def swap(b, h, k):
2. """ Swaps b[h] and b[k] in b
3. Precond: b is a mutable list,
4. h, k are valid positions"""
5. temp= b[h]
6. b[h]= b[k]
7. b[k]= temp

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

x id4
10/8/19 30Lists & Sequences

swap

b id4 h 3

k 4

6

temp 6

0
1
2
3

5
4
7
6

4 5
swap(x, 3, 4)

Lists and Functions: Swap

1. def swap(b, h, k):
2. """ Swaps b[h] and b[k] in b
3. Precond: b is a mutable list,
4. h, k are valid positions"""
5. temp= b[h]
6. b[h]= b[k]
7. b[k]= temp

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

x id4
10/8/19 31Lists & Sequences

swap

b id4 h 3

k 4

7

temp 6

0
1
2
3

5
4
7
6

4 5
5✗swap(x, 3, 4)

Lists and Functions: Swap

1. def swap(b, h, k):
2. """ Swaps b[h] and b[k] in b
3. Precond: b is a mutable list,
4. h, k are valid positions"""
5. temp= b[h]
6. b[h]= b[k]
7. b[k]= temp

Swaps b[h] and b[k],
because parameter b
contains name of list.

id4

x id4
10/8/19 32Lists & Sequences

swap

b id4 h 3

k 4temp 6

0
1
2
3

5
4
7
6

4 5
5✗
6✗

swap(x, 3, 4)

Slice Assignment

• List assignment not limited to one element
§ Slicing accesses several elements at once
§ Can use slicing to assign several at once

• This is a very advanced topic
§ Will never need this in this course
§ Just showing it for completeness
§ Something that is very unique to Python

Slice Assignment

• Can embed a new list inside of a list
§ Syntax: <var>[<start>:<end>] = <list>
§ Replaces that range with content of list

• Example:
>>> a = [1,2,3]
>>> b = [4,5]
>>> a[:2] = b
>>> a
[4, 5, 3]

Replaces [1,2]
with [4,5]

Some Advanced Techniques

• Range and list size need not match
>>> a = [1,2,3]
>>> b = [4,5]
>>> a[:1] = b
>>> a
[4, 5, 2, 3]

• Assigned value can be any iterable
>>> a = [1,2,3]
>>> a[:2] = 'hi'
>>> a
['h', 'i', 3]

Stretches list to fit

Converts to list

