
Errors and Asserts

Module 13

Motivation

• Specifications assign responsibility
§ When code crashes, who is responsible?

• But this is not always immediately clear
§ Have to read & interpret specification
§ Must compare with what actually happened

• Need to understand error messages
§ Error messages tell us what happened
§ But there is a lot of “hidden” detail

Error Messages

Not An Error Message

ZeroDivisionError: division by zero

An Error Message

Traceback (most recent call last):
File "error.py", line 41, in <module>
print(function_1(1,0))

File "error.py", line 16, in function_1
return function_2(x,y)

File "error.py", line 26, in function_2
return function_3(x,y)

File "error.py", line 36, in function_3
return x/y

ZeroDivisionError: division by zero

Everything starting
with the Traceback

Recall: The Call Stack

• Functions are “stacked”
§ Cannot remove one above

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)
§ Top down because of Tutor

• Effects your memory
§ Need RAM for entire stack
§ An issue in adv. programs

Function 1

Function 2

Function 3

Function 4

Frame 6Function 5

calls

calls

calls

calls

Errors and the Call Stack

error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

if __name__ == '__main__':
print(function_1(1,0))

Crashes produce the call stack:
Traceback (most recent call last):
File "error.py", line 20, in <module>
print(function_1(1,0))

File "error.py", line 8, in function_1
return function_2(x,y)

File "error.py", line 12, in function_2
return function_3(x,y)

File "error.py", line 16, in function_3
return x/y

Errors and the Call Stack

error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

if __name__ == '__main__':
print function_1(1,0)
Where error occurred
(or where was found)

Script code.
Global space

Crashes produce the call stack:
Traceback (most recent call last):
File "error.py", line 20, in <module>
print(function_1(1,0))

File "error.py", line 8, in function_1
return function_2(x,y)

File "error.py", line 12, in function_2
return function_3(x,y)

File "error.py", line 16, in function_3
return x/y

Recall: Assigning Responsibility

Function
Developer 1 Developer 2

Defines Calls

BROKEN

Whose fault is it?
Who must fix it?

Determining Responsbility

def function_1(x,y):
"""Returns: result of function_2

Precondition: x, y numbers"""
return function_2(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbers"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zeroWhere is the error?

Approaching the Error Message

• Start from the top
• Look at function call

§ Examine arguments
§ (Print if you have to)
§ Verify preconditions

• Violation? Error found
§ Else go to next call
§ Continue until bottom

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zero

Determining Responsbility

def function_1(x,y):
"""Returns: result of function_2

Precondition: x, y numbers"""
return function_2(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbers"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zero

Error!

Determining Responsbility

def function_1(x,y):
"""Returns: result of function_2

Precondition: x, y numbers"""
return function_2(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbs, y > 0"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zero

Error!

Determining Responsbility

def function_1(x,y):
"""Returns: result of function_2

Precondition: x, y numbs, y > 0"""
return function_2(x,y)

def function_2(x,y):
"""Returns: x divided by y

Precondition: x, y numbs, y > 0"""
return x/y

print(function_1(1,0))

Traceback (most recent call last):

File "error1.py", line 32, in <module>
print(function_1(1,0))

File "error1.py", line 18, in function_1
return function_2(x,y)

File "error1.py", line 28, in function_2
return x/y

ZeroDivisionError: division by zero

Error!

Aiding the Search Process

• We talked about assigning responsibility
§ Have to step through the error message
§ Compare to specification at each step

• How can we make this easier?
§ What if we could control the error messages
§ Write responsibility directly into error
§ Then only need to look at error message

• We do this with assert statements

Assert Statements

• Form 1: assert <boolean>
§ Does nothing if boolean is True
§ Creates an error is boolean is False

• Form 2: assert <boolean>, <string>
§ Very much like form 2
§ But error message includes the message

• Statement to verify a fact is true
§ Similar to assert_equals used in unit tests
§ But more versatile with complete stack trace

Enforcing Preconditions

• Idea: Assert all of the preconditions
§ If preconditions violated, crash immediately
§ Message immediately indicates the problem

• Error position is now immediately clear
§ Error was the call to this function
§ Occurs in line BEFORE in the stack trace

• Example: last_name_first

Enforcing Preconditions

def last_name_first(n):
"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
n has only space, separating first and last."""
assert type(n) == str, 'Precondition violation'
assert count_str(n,' ') == 1, 'Precondition violation'
Implement method here…

Another Advantage

• Undocumented behavior now impossible
§ ALL violations guaranteed to crash
§ Only valid calls execute normally

• Generally considered a good thing
§ Undocumented behavior can metastasize
§ Shuts it down before it can get any worse

• Example: to_centigrade(x)

Eliminating Undocumented Behavior

def to_centigrade(x):
"""Returns: x converted to centigrade

Parameter x: temp in fahrenheit
Precondition: x is a float"""
assert type(n) == float, 'Precondition violation’
Implement method here…

Will do yourself in A4.

Recall: Enforcing Preconditions

def last_name_first(n):
"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
n has only space, separating first and last."""
assert type(n) == str, 'Precondition violation'
assert count_str(n,' ') == 1, 'Precondition violation'
Implement method here…

Can we do
better?

Making Better Error Messages

def last_name_first(n):
"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
n has only space, separating first and last."""
assert type(n) == str, str(n)+' is not a string'
assert count_str(n,' ') == 1, n+' has the wrong form'
Implement method here…

We know n
is a string

The Problem With Error Messages

>>> msg = str(var)+' is invalid'
>>> print(msg)
2 is invalid

• Looking at this output, what is the type of var?
A: int
B: float
C: str
D: Impossible to tell

The Problem With Error Messages

>>> msg = str(var)+' is invalid'
>>> print(msg)
2 is invalid

• Looking at this output, what is the type of var?
A: int
B: float
C: str
D: Impossible to tell CORRECT

The Problem With Error Messages

>>> var = 2
>>> msg = str(var)+' is invalid'
>>> print(msg)
2 is invalid
>>> var = '2'
>>> msg = str(var)+' is invalid'
>>> print(msg)
2 is invalid

The Function repr

• Like str(), turns any value into a string
§ Built-in function provided by Python
§ Useful for concatentating value to string

• But formatted to represent original type
§ str('2') returns '2'
§ repr('2') returns "'2'" (includes quotes)

• Stands for “representation”

Error Messages with repr

>>> msg = str(var)+' is invalid'
>>> print(msg)
2 is invalid

>>> msg = repr(var)+' is invalid'
>>> print(msg)
'2' is invalid

Clear that var
is really a string

Enforcing Preconditions is Tricky!

def last_name_first(n):
"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
There is one or more spaces separating first and last.
There is no space in either the first or last name"""
assert ?????

Assert use expressions only.
Each one must fit on one line.

This is an
advanced

precondition

Asserts are Never Required

• Some preconditions are hard to express
• Sometimes it is too expensive

§ Checking the precondition takes time
§ Sometimes you want the code to run fast
§ Why have asserts if confident no bugs

• In the end, only the specification matters
§ Asserts were there as a convenience
§ Used to help assign responsibility

How About a Compromise?

• Break precondition up into several parts
§ Sometimes this is clear from the specification

• Assert the things that are easy to check
§ This gives us some minimal enforcement
§ Allows us to identify the biggest errors

• Omit the things that are hard to check
§ Will just let that behavior go unchecked
§ Will catch it in the system some other way

Picking a Compromise

def last_name_first(n):
"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
There is one or more spaces separating first and last.
There is no space in either the first or last name"""
assert type(n) == str # Check the type
assert ' ' in n # Least we can say of space
Do not try to enforce anything else

Enforcing Preconditions is Tricky!

def last_name_first(n):
"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
There is one or more spaces separating first and last.
There is no space in either the first or last name"""
assert ?????

Assert use expressions only.
Each one must fit on one line.

This is an
advanced

precondition

A Useful Function

def is_two_words(w):
"""Returns: True if w is 2 words sep by 1 or more spaces.
A word is a string with no spaces. So this means that
1. The first characters is not a space (or empty)
2. The last character is not a space (or empty)
3. There is at least one space in the middle
4. If there is more than one space, the spaces are adjacent
Precondition: w is a str"""
implement me

A Useful Function

def is_two_words(w):
"""Returns: True if w is 2 words sep by 1 or more spaces.
Precondition: w is a str"""
if not ' ' in w:

return False

first = w.find(' '); last = w.rfind(' ')

w0 = w[:first]; w2 = w[last+1:]
w1 = w[first:last+1]

cond1 = w1.count(' ') == len(w1)
cond0 = w0 != ''; cond2 = w2 != ''

return cond0 and cond1 and cond2

Find spaces

Cut in 3 parts

Check parts ok

Enforcing with The Second Function

def last_name_first(n):
"""Returns: copy of n in form 'last-name, first-name'
Precondition: n string in form 'first-name last-name
There is one or more spaces separating first and last.
There is no space in either the first or last name"""
assert type(n) == str
assert is_two_words(n)

Rules for Using Helpers

• The function must return a Boolean
§ True/False and no other options

• It CAN have its own preconditions
§ But should be things checked so far
§ Example: n is a string

• Often does not enforce own preconditions
§ Only used by you (definer and caller)
§ Would just be redundant

A Useful Function

def is_two_words(w):
"""Returns: True if w is 2 words sep by 1 or more spaces.
Precondition: w is a str"""
if not ' ' in w:

return False

first = w.find(' '); last = w.rfind(' ')

w0 = w[:first]; w2 = w[last+1:]
w1 = w[first:last+1]

cond1 = w1.count(' ') == len(w1)
cond0 = w0 != ''; cond2 = w2 != ''

return cond0 and cond1 and cond2

Precondition
not enforced

