
Python Memory

Module 12

The Problem of Methods

• Introduced objects in previous video seires
§ “Folders” with variables and functions
§ Called attributes and methods

• But we saw that strings also have methods
string.name(x,y,…)

method
name

argumentsargument

Are strings objects?

Surprise: All Values are in Objects!

• Including basic values
§ int, float, bool, str

• Example:
>>> x = 1000
>>> id(x) 2.5x

2.5

id5

id5x

float

This Explains A Lot of Things

• Primitives act like classes
§ Conversion function is really a constructor
§ Remember constructor, type have same name

• Example:
>>> type(1)
<class 'int'>
>>> int('1')
1

• Design goals of Python 3
§ Wanted everything an object
§ Makes processing cleaner

• But makes learning harder
§ Objects are complex topic
§ Want to delay if possible

But Not Helpful to Think This Way

• Number folders are immutable
§ “Attributes” have no names
§ No way to reach in folder
§ No way to change contents

>>> x = 1000
>>> y = 1000
>>> id(x)
4497040368
>>> id(y)
4497040400
>>> y = y+1
>>> id(y)
4497040432

1000

4497040368

4497040368x

int Makes a brand
new int folder

But Not Helpful to Think This Way

• Number folders are immutable
§ “Attributes” have no names
§ No way to reach in folder
§ No way to change contents

• Remember purpose of folder
§ Show how objects can be altered
§ Show how variables “share” data
§ This cannot happen in basic types

• So just ignore the folders
§ (The are just metaphors anyway)

>>> x = 1000
>>> y = 1000
>>> id(x)
4497040368
>>> id(y)
4497040400
>>> y = y+1
>>> id(y)
4497040432

Why Show All This?

• Many of these are advanced topics
§ Only advanced programmers need

§ Will never need in the context of 1110

• But you might use them by accident

• Goal: Teach you to read error messages
§ Need to understand what messages say

§ Only way to debug your own code

The Three “Areas” of Memory

Global
Space

Call Stack

Heap
Space

Global Space

• This is the area you “start with”
§ First memory area you learned to visualize
§ A place to store “global variables”
§ Lasts until you quit Python

• What are global variables?
§ Any assignment not in a function definition
§ Also modules & functions!
§ Will see more on this in a bit

id2p

The Call Stack

• The area where call frames live
§ Call frames are created on a function call
§ May be several frames (functions call functions)
§ Each frame deleted as the call completes

• Area of volatile, temporary memory
§ Less permanent than global space
§ Think of as “scratch” space

• Primary focus of Assignment 2

incr_x 2

id2q

Heap Space or “The Heap”

• Where the “folders” live
§ Stores only folders

• Can only access indirectly
§ Must have a variable with identifier
§ Can be in global space, call stack

• MUST have variable with id
§ If no variable has id, it is forgotten
§ Disappears in Tutor immediately
§ But not necessarily in practice
§ Role of the garbage collector

id2

x 0.0

y 0.0

z 0.0

Point3

Revisiting Modules

• Modules seem to behave a lot like objects
§ They can have variables: math.pi
§ Can even reassign these variables!
§ Function calls look like methods: math.cos(1)

• So are they also objects?
§ Said everything in Python is an object

• Yes (sort of)
§ Look same in memory, but created differently
§ Need to understand what happens on import

Modules and Global Space

import math Global Space

id5math

Heap Space

id5
module

• Importing a module:
§ Creates a global variable

(same name as module)

§ Puts contents in a folder
• Module variables

• Module functions

§ Puts folder id in variable

• Can reassign module var

• Tutor won’t show contents

pi 3.141592

e 2.718281

functions

Modules vs Objects

Module Object

id3

x 5.0

y 2.0

z 3.0

id3p

Point3

id2

id2math

module

pi 3.141592

e 2.718281

functions math.pi
math.cos(1)

p.x
p.clamp(-1,1)

Modules vs Objects

Module Object

id3

x 5.0

y 2.0

z 3.0

id3p

Point3

id2

id2math

module

pi 3.141592

e 2.718281

functions math.pi
math.cos(1)

p.x
p.clamp(-1,1)

The period (.) means

“go inside of the folder”

So Why Have Both?

• Question is a matter of program design
§ Some software will use modules like objects

• Classes can have many instances
§ Infinitely many objects for the Point3 class
§ Reason we need a constructor function

• Each module is a unique instance
§ Only one possibility for pi, cosine
§ That is why we import them
§ Sometimes refer to as singleton objects

So Why Have Both?

• Question is a matter of program design
§ Some software will use modules like objects

• Classes can have many instances
§ Infinitely many objects for the Point3 class
§ Reason we need a constructor function

• Each module is a unique instance
§ Only one possibility for pi, cosine
§ That is why we import them
§ Sometimes refer to as singleton objects

Choice is an advanced topic

beyond scope of this course

Are Functions Objects?

• “Everything an object” has major ramifications
§ Forced us to completely rethink modules
§ Anything else? What about functions?

• But functions live in the call stack!
§ Function calls live in the call stack
§ Remember there are two parts to a function
§ Where does the function definition live?
§ Python had to store the code somewhere

• If you are thinking objects, you are right

Functions and Global Space

• A function definition…
§ Creates a global variable

(same name as function)
§ Creates a folder for body
§ Puts folder id in variable

• Variable vs. Call
>>> to_centigrade
<fun to_centigrade at 0x100498de8>
>>> to_centigrade (32)
0.0

def to_centigrade(x):

return 5*(x-32)/9.0

Global Space

id6to_centigrade

Heap Space

id6

Body

function

Body

What Does Importing a Function Do?

Just like
defining it

How About import *?

Ouch!

Working with Function Variables

• So function definitions are objects
§ Function names are just variables
§ Variable refers to a folder storing the code
§ If you reassign the variable, it is lost

• You can also assign them to other variables
§ Variable now refers to that function
§ You can use that NEW variable to call it
§ Just use variable in place of function name

Example: add_one

Frame remembers
the original name

Application: Functions as Parameters

def doit(f,arg):
"""Returns the result of the call f(arg)

Param: f the function to call
Precond: f a function that takes one argument

Param arg: the function argument
Precond: arg satisfies the precondition of f"""
return f(arg)

Will see practical applications
of this in a later video series

Call Frames vs. Global Variables

The function does nothing:
def swap(a,b):

"""Swap a & b"""
tmp = a
a = b
b = tmp

>>> a = 1
>>> b = 2
>>> swap(a,b)

3
4
5 swap 3

1 2

Global Space

Call Frame

2
1

a b

1 2a b

Call Frames vs. Global Variables

The function does nothing:
def swap(a,b):

"""Swap a & b"""
tmp = a
a = b
b = tmp

>>> a = 1
>>> b = 2
>>> swap(a,b)

3
4
5 swap 4

1 2

Global Space

Call Frame

2
1

a b

1 2a b

1tmp

Call Frames vs. Global Variables

The function does nothing:
def swap(a,b):

"""Swap a & b"""
tmp = a
a = b
b = tmp

>>> a = 1
>>> b = 2
>>> swap(a,b)

3
4
5 swap 5

1 2 2

Global Space

Call Frame

2
1

a b

1 2a b

1tmp

x

Call Frames vs. Global Variables

The function does nothing:
def swap(a,b):

"""Swap a & b"""
tmp = a
a = b
b = tmp

>>> a = 1
>>> b = 2
>>> swap(a,b)

3
4
5 swap

1 2 2 1

Global Space

Call Frame

2
1

a b

1 2a b

1tmp

x x

Call Frames vs. Global Variables

The function does nothing:
def swap(a,b):

"""Swap a & b"""
tmp = a
a = b
b = tmp

>>> a = 1
>>> b = 2
>>> swap(a,b)

3
4
5

Global Space

Call Frame

2
1

1 2a b

ERASE THE FRAME

Global Space

Functions Can Access Global Space

• Ways to use a global
§ Have to use in expression
§ CANNOT do assignment

• What happens if assign?
§ Makes a new local instead
§ Even if you assign it later

• So what use for globals?
§ Typically use as constants
§ Example: math.pi

get_a

4a

8 a = 4 # global var
…
11 def get_a():
… """…"""
15 return a # global

4RETURN

Global Space

Functions Can Access Global Space

• Ways to use a global
§ Have to use in expression
§ CANNOT do assignment

• What happens if assign?
§ Makes a new local instead
§ Even if you assign it later

• So what use for globals?
§ Typically use as constants
§ Example: math.pi

mask_a

4a

18 def mask_a():
… """…"""
22 a = 3.5
23 return a # local

3.5a 3.5RETURN

Global Space

The Global Keyword

• Possible to change global
§ Have to mark it as such
§ global <variable>
§ Should be at body start

• Use sparingly
§ Using globals is confusing
§ Easy to get lost
§ Best for constants

change_a

4 3.5a

26 def change_a():
… """…"""
30 global a
31 a = 3.5
32 return a # local

3.5RETURN

x

Function Bodies Can Contain Other Calls

• We have seen this with print in greet
§ Does print have a call frame?
§ Yes, but cannot visualize (definition hidden)

• What happens when one calls another?
§ Have to create a new call frame
§ Old call frame freezes in place
§ Waits until second frame is erased
§ Then first frame continues again

One Function Calling Another

1. def foo(x):
2. y = x+1
3. z = bar(y)
4. return z
5.
6. def bar(x):
7. y = x-1
8. return y
9.
10.w = foo(2)

foo 2
2x

Let’s visualize
ourselves first.

(Tutor incomplete)

One Function Calling Another

1. def foo(x):
2. y = x+1
3. z = bar(y)
4. return z
5.
6. def bar(x):
7. y = x-1
8. return y
9.
10.w = foo(2)

foo 3
2x 3y

Ready to
execute

One Function Calling Another

1. def foo(x):
2. y = x+1
3. z = bar(y)
4. return z
5.
6. def bar(x):
7. y = x-1
8. return y
9.
10.w = foo(2)

foo 3
2x 3y

bar 7
3x

FROZEN

One Function Calling Another

1. def foo(x):
2. y = x+1
3. z = bar(y)
4. return z
5.
6. def bar(x):
7. y = x-1
8. return y
9.
10.w = foo(2)

foo 3
2x 3y

bar 8
3x 2y

FROZEN

One Function Calling Another

1. def foo(x):
2. y = x+1
3. z = bar(y)
4. return z
5.
6. def bar(x):
7. y = x-1
8. return y
9.
10.w = foo(2)

foo 3
2x 3y

bar

3x 2y
2RETURN

FROZEN

One Function Calling Another

1. def foo(x):
2. y = x+1
3. z = bar(y)
4. return z
5.
6. def bar(x):
7. y = x-1
8. return y
9.
10.w = foo(2)

foo 4
2x 3y
2z

UNFREEZE

ERASE WHOLE FRAME

One Function Calling Another

1. def foo(x):
2. y = x+1
3. z = bar(y)
4. return z
5.
6. def bar(x):
7. y = x-1
8. return y
9.
10.w = foo(2)

foo

2x 3y
2z

2RETURN

Viewing in the Python Tutor

Viewing in the Python Tutor

Viewing in the Python Tutor

Cannot see
line number

The Call Stack

• Functions are “stacked”
§ Cannot remove one above

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)
§ Top down because of Tutor

• Effects your memory
§ Need RAM for entire stack
§ An issue in adv. programs

Function 1

Function 2

Function 3

Function 4

Frame 6Function 5

calls

calls

calls

calls

The Call Stack

• Functions are “stacked”
§ Cannot remove one above

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)
§ Top down because of Tutor

• Effects your memory
§ Need RAM for entire stack
§ An issue in adv. programs

Function 1

Function 2

Function 3

Function 4

calls

calls

calls

The Call Stack

• Functions are “stacked”
§ Cannot remove one above

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)
§ Top down because of Tutor

• Effects your memory
§ Need RAM for entire stack
§ An issue in adv. programs

Function 1

Function 2

Function 3

Function 4

Function 6

calls

calls

calls

calls

Anglicize Example

Anglicize Example

Global
Space

Call Stack

