
Objects

Module 11

The Basic Python Types

• Type int:
§ Values: integers
§ Ops: +, –, *, //, %, **

• Type float:
§ Values: real numbers
§ Ops: +, –, *, /, **

• Type bool:
§ Values: True and False
§ Ops: not, and, or

• Type str:
§ Values: string literals

• Double quotes: "abc"
• Single quotes: 'abc'

§ Ops: + (concatenation)

9/26/19 Objects 2

Are the the only
types that exist?

Example: Points in 3D Space

def distance(x0,y0,z0,x1,y1,z1):
"""Returns distance between points (x0,y0,y1) and (x1,y1,z1)

Param x0: x-coord of 1st point
Precond: x0 is a float

Param y0: y-coord of 1st point
Precond: y0 is a float

Param z0: z-coord of 1st point
Precond: z0 is a float
….
"""

• This is very unwieldy
§ Specification is too long
§ Calls needs many params
§ Typo bugs are very likely

• Want to reduce params
§ Package points together
§ How do we do that?

Points as Their Own Type

def distance(p0,p1):
"""Returns distance between points p0 and p1

Param p0: The second point
Precond: p0 is a Point3

Param p1: The second point
Precond: p1 is a Point3"""
…

This lecture will help you
make sense of this spec.

9/26/19 Objects 4

Classes: Custom Types

• Class: Custom type not built into Python
§ Just like with functions: built-in & defined
§ Types not built-in are provided by modules

• Might seem weird: type(1) => <class 'int’>
§ In Python 3 type and class are synonyms
§ We will use the historical term for clarity

introcs provides several classes

9/26/19 Objects 5

Objects: Values for a Class

• Object: A specific value for a class type
§ Remember, a type is a set of values
§ Class could have infinitely many objects

• Example: Class is Point3
§ One object is origin; another x-axis (1,0,0)
§ These objects go in params distance function

• Sometimes refer to objects as instances
§ Because a value is an instance of a class
§ Creating an object is called instantiation

9/26/19 Objects 6

How to Instantiate an Object?

• Other types have literals
§ Example: 1, 'abc', true
§ No such thing for objects

• Classes are provided by modules
§ Modules typically provide new functions
§ In this case, gives a function to make objects

• Constructor function has same name as class
§ Similar to types and type conversion
§ Example: str is a type, str(1) is a function (call)

Demonstrating Object Instantiation

>>> import Point3 from introcs # Module with class
>>> p = Point3(0,0,0) # Create point at origin
>>> p # Look at this new point
<class 'introcs.geom.point.Point3'>(0.0,0.0,0.0)
>>> type(p) == Point3 # Check the type
True
>>> q = Point3(1,2,3) # Make new point
>>> q # Look at this new point
<class 'introcs.geom.point.Point3'>(1.0,2.0,3.0)

What Does an Object Look Like?

• Objects can be a bit strange to understand
§ Don’t look as simple as ints or even strings
§ Example: <class 'introcs.Point3'>(0.0,0.0,0.0)

• To understand objects, need to visualize them
§ Use of metaphors to help us think like Python
§ Call frames (assume seen) are an example

• To visualize we rely on the Python Tutor
§ Website linked to from the course webpage
§ But use only that one! Else might not show all.

Metaphor: Objects are Folders

>>> import introcs

>>> p = introcs.Point3(0,0,0)

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

Need to import module
that has Point class.

Constructor is function.
Prefix w/ module name.

Unique tab
identifier

Reminder: Turn off arrows!

Metaphor: Objects are Folders

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

Unique tab
identifier

• Idea: Data too “big” for p
§ Split into many variables
§ Put the variables in folder
§ They are called attributes

• Folder has an identifier
§ Unique; picked by Python
§ Cannot ever change
§ Has no real meaning;

only identifies

Metaphors Versus Reality

>>> import introcs

>>> p = introcs.Point3(0,0,0)

>>> id(p)

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

Need to import module
that has Point class.

Constructor is function.
Prefix w/ module name.

Shows the ID of p.

Actually a
big number

Object Variables

• Variable stores object name
§ Reference to the object
§ Reason for folder analogy

• Assignment uses object name
§ Example: q = p
§ Takes name from p
§ Puts the name in q
§ Does not make new folder!

• This is the cause of many
mistakes for beginners

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

id2q

Learning with the Interactive Shell

• Interactive shell is a helpful learning tool
§ It gives you immediate feedback
§ Allows you to experiment on small programs

• Often best way to understand types in Python
§ Type an expression into interactive shell
§ Python displays back a value
§ Could use that value in your python

• But approach only works with basic types!

Example with a Basic Type

>>> 1 + 2 # Expression
3
>>> x = 3 # 3 is ALSO an expression

• Why does this work?
§ Basic types have literal expressions
§ Literals: expression and value are same

• But objects do not have literals!

Trying this With an Object

>>> Point3(0,0,0) # Expression
<class 'Point3'>(0.0,0.0,0.0)
>>> x = <class 'Point3'>(0.0,0.0,0.0) # ERROR!

• Why does this not work?
§ <class 'Point3'>(0.0,0.0,0.0) not an expression
§ Cannot type it back into Python

• This is an object representation

Object Representations

• Anything shown in <> is a representation
§ Quick summary of the object and its contents
§ Because interactive shell cannot draw folders
§ It is not a valid Python expression

• Almost the same as calling repr on the object
>>> p = Point3(0,0,0)
>>> p
<class 'Point3'>(0.0,0.0,0.0)
>>> repr(p)
"<class 'Point3'>(0.0,0.0,0.0)"

Object Representations

• Anything shown in <> is a representation
§ Quick summary of the object and its contents
§ Because interactive shell cannot draw folders
§ It is not a valid Python expression

• Almost the same as calling repr on the object
>>> p = Point3(0,0,0)
>>> p
<class 'Point3'>(0.0,0.0,0.0)
>>> repr(p)
"<class 'Point3'>(0.0,0.0,0.0)"

repr without
the quotes

Have Seen this Before with Types

>>> type(1)
<class 'int'>
>>> x = <class 'int'> # ERROR!!
…
>>> x = int # Correct
>>> x # Display representation
<class 'int'>
>>> repr(x) # Display the string
"<class 'int'>"

Objects and Attributes

• Attributes live inside objects
§ Can access these attributes
§ Can use them in expressions

• Access: <variable>.<attr>
§ Look like module variables
§ Example: math.pi

• Example
>>> p = introcs.Point3(1,2,3)
>>> a = p.x + p.y

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

Objects and Attributes

• Can also assign attributes
§ Reach into folder & change
§ Do without changing p

• <var>.<attr> = <exp>
§ Example: p.x = 5.0
§ See this in visualizer

• This is very powerful
§ Another reason for objects
§ Why need visualization

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

5.0x

Exercise: Attribute Assignment
• Recall, q gets name in p

>>> p = introcs.Point3(0,0,0)
>>> q = p

• Execute the assignments:
>>> p.x = 5.6
>>> q.x = 7.4

• What is value of p.x?

id1p id1q

A: 5.6
B: 7.4
C: id1
D: I don’t know

id1

x 0.0

y 0.0

z 0.0

Point3

Exercise: Attribute Assignment
• Recall, q gets name in p

>>> p = introcs.Point3(0,0,0)
>>> q = p

• Execute the assignments:
>>> p.x = 5.6
>>> q.x = 7.4

• What is value of p.x?

id1p id1q

A: 5.6
B: 7.4
C: id1
D: I don’t know

id1

x

y 0.0

z 0.0

Point3

CORRECT

5.6 7.4x

Attribute Invariants

Invariants: Attribute Restrictions

• Some attributes have invariants
§ Restrictions on types may take
§ Similar to function preconditions

• Example: Point3
§ Attributes must be floats
§ If try an int will convert
§ Else get AssertionError
>>> p = introcs.Point3(1,2,3)
>>> p.x = 'a'
AssertionError

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

Another Example: RGB

• RGB is another class
§ Represents pixel colors
§ Attribs: red, blue, green
§ Also alpha (transparency)
§ Useful for image manip.

• All have same invariants
§ Values must be ints
§ Must be in range 0..255
§ Why? Color theory

>>> import introcs
>>> c = introcs.RGB(128,0,0)
>>> r = c.red
>>> c.red = 500 # out of range
AssertionError: 500 outside [0,255]

id1c

128r

id1

red 128

green 0

blue 0

RGB

Why Invariants?

• As we said, like a function precondition
§ Function behavior not guaranteed if violated
§ Invariants ensure the object “works properly”

• If invariants are violated, say object corrupted
§ Same idea as when a file is corrupted
§ Corrupted objects can do weird things

• Not all objects enforce their invariants
§ Again same as function preconditions
§ But the classes in introcs module do

Where Do We Find Invariants?

In the documentation!

Prefer webpage.
Help menu for
classes/objects
is very arcane.

Objects Can Be Used in Fruitful Functions

def copy2d(p):
"""Returns a 2d copy of the point p

This function makes a new point with same x, y
value as p, but whose z value is 0.

Parameter p: The point to copy
Precondition: p is a Point3 object"""
q = introcs.Point3(p.x,p.y,0)
return q Needed to make

a new Point3

Can Also Be Used in Mutable Functions

• Mutable function: alters the parameters
§ Often a procedure; no return value

• Until now, this was impossible
§ Function calls COPY values into new variables
§ New variables erased with call frame
§ Original (global?) variable was unaffected

• But object variables are folder names
§ Call frame refers to same folder as original
§ Function may modify the contents of this folder

Example: Mutable Function Call

• Example:
def incr_x(q):

q.x = q.x + 1

>>> p = Point3(0,0,0)
>>> p.x
0.0
>>> incr_x(p)
>>> p.x
1.0

1

incr_x 2

id1q

Global STUFF

Call Frame

id1pid1

0.0
…

Point3
x

2

Example: Mutable Function Call

• Example:
def incr_x(q):

q.x = q.x + 1

>>> p = Point3(0,0,0)
>>> p.x
0.0
>>> incr_x(p)
>>> p.x
1.0

1

incr_x

id1q

Global STUFF

Call Frame

id1pid1

0.0
…

Point3
x

2
1.0x

Example: Mutable Function Call

• Example:
def incr_x(q):

q.x = q.x + 1

>>> p = Point3(0,0,0)
>>> p.x
0.0
>>> incr_x(p)
>>> p.x
1.0

1

Global STUFF

Call Frame

id1pid1

0.0
…

Point3
x

2
1.0x

ERASE WHOLE FRAME

Methods: Functions Tied to Objects

• Have seen object folders contain variables
§ Syntax: ⟨obj⟩.⟨attribute⟩ (e.g. p.x)
§ These are called attributes

• They can also contain functions
§ Syntax: ⟨obj⟩.⟨method⟩(⟨arguments⟩)
§ Example: p.abs()
§ These are called methods

• Visualizer will not show these inside folders
§ Technical reasons beyond scope of course

Methods: Functions Tied to Objects

• Have seen object folders contain variables
§ Syntax: ⟨obj⟩.⟨attribute⟩ (e.g. p.x)
§ These are called attributes

• They can also contain functions
§ Syntax: ⟨obj⟩.⟨method⟩(⟨arguments⟩)
§ Example: p.abs()
§ These are called methods

• Visualizer will not show these inside folders
§ Technical reasons beyond scope of courseNot a problem, since do not change like attributes.

Understanding Method Calls

• Object before the name is an implicit argument
• Example: distance

>>> p = Point3(0,0,0)
>>> q = Point3(1,0,0)
>>> r = Point3(0,0,1)
>>> p.distance(r)
1.0
>>> q.distance(r)
1.4142135623730951

• Clear if had call frame
§ Object gets special var
§ Called the self variable

• But need def for frame
§ Why visualizer no frames
§ Will cover defs later
§ So learn from practice

Where Do We Find Methods?

In the documentation!

