Module 11

Objects



The Basic Python Types

e Type int: * Type str:
* Values: integers = Values: string literals
= Ops: +,—, *,//, %, ** * Double quotes: "abc"
» Type float: e Single quotes: 'abc'

= Values: real numbers " Ops: + (concatenation)

= Ops: +,—, *,/,**

* Type bool: Are the the only
= Values: True and False types that exist?
= Ops: not, and, or

9/26/19 Objects



Example: Points in 3D Space

def distance(x0,y0,z0,x1,y1,z1):

"Returns distance between points (x0,y0,y1) and (x1,y1,z1)

Param x0: x-coord of 1st point
Precond: x0 is a float

Param yO: y-coord of 1st point
Precond: yO is a float

Param z0: z-coord of 1st point
Precond: zO is a float

e This 1s very unwieldy
= Specification 1s too long
= Calls needs many params
= Typo bugs are very likely
* Want to reduce params

= Package points together
* How do we do that?




Points as Their Own Type

def distance(pO,pl):
"""Returns distance between points pO and pl

Param pO: The second point
Precond: pO is a Point3 This lecture will help you

make sense of this spec.

Param pl: The second point
Precond: pl is a Point3"""

9/26/19 Objects



Classes: Custom Types

e (Class: Custom type not built into Python
= Just like with functions: built-in & defined
= Types not built-in are provided by modules
e Might seem weird: type(l) => <class 'int’>
= In Python 3 type and class are synonyms

= We will use the historical term for clarity

introcs provides several classes

9/26/19 Objects



Objects: Values for a Class

* Object: A specific value for a class type
= Remember, a type 1s a set of values

= Class could have infinitely many objects
 Example: Class 1s Point3

= One object is origin; another x-axis (1,0,0)

= These objects go 1in params distance function
* Sometimes refer to objects as instances

= Because a value 1s an instance of a class
= Creating an object is called instantiation

9/26/19 Objects



How to Instantiate an Object?

e Other types have literals
= Example: 1, 'abc', true
= No such thing for objects
* Classes are provided by modules

= Modules typically provide new functions

= In this case, gives a function to make objects
* Constructor function has same name as class

= Similar to types and type conversion
= Example: str 1s a type, str(l) is a function (call)



Demonstrating Object Instantiation

>>> jmport Pointd from introcs # Module with class

>>>p = Point4(0,0,0) # Create point at origin
>>> # Look at this new point
<class 'introcs.geom.point.Point3'>(0.0,0.0,0.0)

>>> type(p) == Pointd # Check the type

True

>>> ( = Pointd(1,%,3) # Make new point

>>> # Look at this new point

<class 'introcs.geom.point.Point3'>(1.0,2.0,3.0)



What Does an Object Look Like?

* Objects can be a bit strange to understand
= Don’t look as simple as ints or even strings
= Example: <class 'introcs.Point3'>(0.0,0.0,0.0)
* To understand objects, need to visualize them
= Use of metaphors to help us think like Python
= Call frames (assume seen) are an example
* To visualize we rely on the Python Tutor

" Website linked to from the course webpage
= But use only that one! Else might not show all.



Metaphor: Objects are Folders

>>> import introcs

Need to imert module P 1d2 Unique tab
that has point class. : .
1dentifier

>>>p = introcs.Point3(0,0,0) 1d2

Point3
Constructor 1s function.
Prefix w/ module name. X 0.0
y 0.0
Reminder: Turn off arrows! Z 0.0




Metaphor: Objects are Folders

e Idea: Data too “big” for p
= Split into many variables P | 192 2\ Unique tab }

= Put the variables in folder 1dentifier
4 . id2
= They are called attributes ,
. o Point3
e Folder has an identifier 00
= Unique; picked by Python h '
= Cannot ever change Y 0.0
= Has no real meaning; Z 0.0

only 1dentifies



Metaphors Versus Reality

>>> import introcs

Need to import module
that has point class.

>>> p = introes.Point3(0,0,0)

Constructor 1s function.
Prefix w/ module name.

>>> id(p)

[ Shows the ID of p. }

/ Actually a

|

id2 big number
id2
Point3
X 0.0
y | 0.0
z 0.0




Object Variables

* Variable stores object name
= Reference to the object p id2

= Reason for folder analogy

* Assignment uses object name

id2
= Example: q=p
= Takes name from p
= Puts the name in q X
= Does not make new folder! y
e This 1s the cause of many )

mistakes for beginners

id2

Point3

0.0

0.0

0.0




Learning with the Interactive Shell

 Interactive shell is a helpful learning tool
= It gives you immediate feedback
= Allows you to experiment on small programs

e Often best way to understand types in Python
= Type an expression into interactive shell

= Python displays back a value

= Could use that value in your python

 But approach only works with basic types!



Example with a Basic Type

>>> 1 + 2 # Expression
3
>>>X =34 # & is ALSO an expression

* Why does this work?

= Basic types have literal expressions

= Literals: expression and value are same

e But objects do not have literals!



Trying this With an Object

>>> Point3(0,0,0) # Bxpression
<class 'Point3>(0.0,0.0,0.0)
>>> x = <class 'Point3'>(0.0,0.0,0.0) # ERROR!

* Why does this not work?

= <class 'Point3>(0.0,0.0,0.0) not an expression
= Cannot type it back into Python

e This 1s an object representation



Object Representations

e Anything shown in <> 1s a representation
* Quick summary of the object and its contents
= Because interactive shell cannot draw folders

= It 1s not a valid Python expression

* Almost the same as calling repr on the object
>>>p = Point3(0,0,0)
>>>p
<class 'Point3'>(0.0,0.0,0.0)
>>> repr(p)
"<class 'Point3'>(0.0,0.0,0.0)"



Object Representations

e Anything shown in <> 1s a representation
* Quick summary of the object and its contents
= Because interactive shell cannot draw folders

= It 1s not a valid Python expression

* Almost the same as calling repr on the object

>>>p = Point3(0,0,0) repr without
>>>p the quotes

<class 'Point3'>(0.0,0.0,0.0)
>>> repr(p)
"<class 'Point3'>(0.0,0.0,0.0)"




Have Seen this Before with Types

>>> type(l)
<class 'int'>
>>> x = <class 'int'> # ERROR!!

>>> x = int # Correct

>>> X # Display representation
<class 'Int'>

>>> pepr(X) # Display the string
"<class 'int">"



Objects and Attributes

e Attributes live inside objects
= Can access these attributes

= Can use them in expressions

e Access: <variable>.<attr>

= [Look like module variables
= Example: math.pi

 Example

>>>p = introcs.Point3(1,R,3)
>>> g8 =DpX+DYy

id3

id3

Point3




Objects and Attributes

e Can also assign attributes

P id3
= Reach into folder & change
= Do without changing p id3
o <var>.<attr> = <exp> Point3
= Example: p.x=5.0 < | D0 5.0
= See this in visualizer
.. y (2.0
e This 1s very powerful
z (3.0

= Another reason for objects

* Why need visualization



Exercise: Attribute Assignment

e Recall, q gets name 1n p
>>> p = introes.Point3(0,0,0)
>>> d=p

e Execute the assignments:
>>>Dp.X = 5.6
>>> (X = 7.4

e What is value of p.x?

A: 5.6

B:74

C:id1

D: I don’t know

id1 id1
id1
Point3
x 0.0
y 0.0
z (0.0




Exercise: Attribute Assignment

e Recall, q gets name 1n p

>>> p = introes.Point3(0,0,0) p | idl q| idl

>>> (=D

e Execute the assignments: id1

>>>DpX =29.6 Point3

>>>q.x = 7.4
e What is value of p.x?

A:5.6 y 0.0
B:74 CORRECT 0.0
C:1id1 :
D: I don’t know

X ¥ 7.4




Attribute Invariants



Invariants: Attribute Restrictions

* Some attributes have invariants

= Restrictions on types may take

= Similar to function preconditions
 Example: Point3

= Attributes must be floats

= If try an int will convert

= Else get AssertionError

>>> p = introes.Point3(1,2,3)

>>>pXxX="a

AssertionError

id3

id3

Point3

x |1.0

y |2.0

z 3.0




Another Example: RGB

e RGB 1s another class _ id1
. C id1 RGB
= Represents pixel colors
: d | 128
= Attribs: red, blue, green 188 Pe
reen 0
= Also alpha (transparency) 6
blue 0

= Useful for image manip.
>>> import introcs

>>> ¢ = introcs.RGB(128,0,0)
= Values must be ints >>> p = ¢.red

e All have same invariants

= Must be in range 0..255 >>> ¢.red = 500 # out of range
= Why? Color theory AssertionError: 500 outside [0,259]



Why Invariants?

* As we said, like a function precondition
* Function behavior not guaranteed if violated

= Invariants ensure the object “works properly”

 If invariants are violated, say object corrupted
= Same 1dea as when a file is corrupted
= Corrupted objects can do weird things

e Not all objects enforce their invariants

= Again same as function preconditions
= But the classes in introcs module do



Where Do We Find Invariants?

Attributes )
el [ In the documentation! J

The red channel.

Invariant: Value must be an int between 0 and 255, inclusive.

green
The green channel.

Prefer webpage.

Invariant: Value must be an int between o0 and 255, inclusive.

e Help menu for
The blue channel. classes/objects
Invariant: Value must be an int between 0 and 255, inclusive. iS vV ery arcane.

alpha
The alpha channel.

This value is used for transparency effects (but not always supported).

Invariant: Value must be an int between 0 and 255, inclusive.



Objects Can Be Used in Fruitful Functions

def copy2d(p):
"""Returns a 2d copy of the point p

This function makes a new point with same X, y
value as p, but whose z value is O.

Parameter p: The point to copy
Precondition: p is a Point3 object™™"
q = introcs.Point3(p.x,p.y,0)

return q Needed to make
a new Point3




Can Also Be Used in Mutable Functions

 Mutable function: alters the parameters
= Often a procedure; no return value
e Until now, this was impossible

= Function calls COPY values into new variables
= New variables erased with call frame
= Original (global?) variable was unaffected

e But object variables are folder names

= Call frame refers to same folder as original

* Function may modify the contents of this folder



Example: Mutable Function Call

 Example:

1
2

>>> p = Point3(0,0,0)

def incr_x(q):
- qx=qx+1

>>>D.X

0.0
>>> iner_x(p)
>>> pP.X

1.0

Global STUFF

id1

D

id1

Point3

0.0

Call Frame

iner_x

q

id1




Example: Mutable Function Call

 Example:

1
2

>>> p = Point3(0,0,0)

def incr_x(q):
- qx=qx+1

>>>D.X

0.0
>>> iner_x(p)
>>> pP.X

1.0

Global STUFF

id1

D

id1

Point3

®0 1.0

Call Frame

iner_x

q

id1




Example: Mutable Function Call

 Example:

1
2

>>> p = Point3(0,0,0)

def incr_x(q):
- qx=qx+1

>>>D.X

0.0
>>> iner_x(p)
>>> pP.X

1.0

Global STUFF

id1 P

id1

Point3

x| 1.0

Call Frame

ER4g
E WH OLE FRAM
E



Methods: Functions Tied to Objects

* Have seen object folders contain variables
= Syntax: (obj).(attribute) (e.g. p.x)
= These are called attributes
* They can also contain functions
= Syntax: (obj).(method)({arguments))
= Example: p.abs()
= These are called methods
e Visualizer will not show these 1nside folders

= Technical reasons beyond scope of course



Methods: Functions Tied to Objects

* Have seen object folders contain variables
= Syntax: (obj).(attribute) (e.g. p.x)
= These are called attributes
* They can also contain functions
= Syntax: (obj).(method)({arguments))
= Example: p.abs()

= These are called methods

e Visualizer will not show these inside folders

[ Not a problem, since do not change like attributes. ]




Understanding Method Calls

* Object before the name 1s an implicit argument

 Example: distance
>>>p = Point3(0,0,0)
>>> q = Point3(1,0,0)
>>> p = Point3(0,0,1)
>>> p.distance(r)
1.0
>>> (.distance(r)
1.4142135623730951

e (lear if had call frame
= (Object gets special var
= (Called the self variable
* But need def for frame
* Why visualizer no frames
" Will cover defs later

= So learn from practice




Where Do We Find Methods?

Mutable Methods

Mutable methods modify the underlying object.

In the documentation!

self.interpolate(other, alpha)
Interpolates this object with another in place

This method will modify the attributes of this oject. The new attributes will be
equivalent to:

alphaxself+(1-alpha)*other

according to the rules of addition and scalar multiplication.
This method returns this object for chaining.

Parameters: ¢ other (Vector3) — object to interpolate with
e alpha (int or float) — scalar to interpolate by
Returns: This object, newly modified

self.clamp (low, high)
Clamps this point to the range [ low, high].



