
Expressions and Types

Module 1

The Three Main Concepts

12.345

42

"Hello"
integer

Expressions

Values

Types float (real number)

string (of characters)

1.0 / 3.0

"Hello" + "World"

34 * (23 + 14)

Expressions

• Expression: something you type into Python
§ Right now, type after the >>>
§ Will see how to put into files in later on

• Can just be simple numbers (e.g. 34)
• Or can be mathematical formula

§ 1.0/3.0
§ 34 * (23 + 14)
§ "Hello" + "World"

Can be things other
than numbers (i.e. text)

Values

• Values: what Python produces from expressions
§ A expression represents something
§ Python evaluates it (turns it into a value)
§ Similar to what a calculator does

• Examples:
>>> 2.3
2.3
>>> (3 * 7 + 2) * 0.5
11.5

Literal
(evaluates to self)

An expression with four
literals and some operators

Types

• Everything on a computer reduces to numbers
§ Letters represented by numbers (ASCII codes)
§ Pixel colors are three numbers (red, blue, green)
§ So how can Python tell all these numbers apart?

• Type: Set of values and operations on them
§ Examples of operations: +, -, /, *
§ The meaning of these depends on the type
§ Example: 1+1 vs "Hello" + "World"

Type int: the Integers

• Values are positive and negative whole numbers
§ Examples: …, –3, –2, –1, 0, 1, 2, 3, 4, 5, …
§ Literals should only have digits (no commas or periods)
§ Good: 43028030 , BAD: 43,028,030

• Operations are typical math operations
§ Addition: +
§ Subtraction: - (but also MINUS)
§ Multiply: *
§ Divide: //
§ Exponent: ** (to the power of)

Will see
more later

Understanding Operations

• Operations on int values must yield an int
§ Example: 1 // 2 rounds result down to 0

§ Companion operation: % (remainder)

§ 7 % 3 evaluates to 1, remainder when dividing 7 by 3

• Operator / is not an int operation in Python 3
§ This is an operator for the float type (separate video)

§ You won’t get an error, but Python does something different

§ Will address in a later video

§ For now, restrict operations on int to those meant for it

Type float: Real Numbers

• Values are distinguished by decimal points
§ A number with a “.” is a float literal (e.g. 2.0)
§ Without a decimal a number is an int literal (e.g. 2)

• Operations are almost the same as for int
§ float has a different division operator
§ Example: 1.0/2.0 evaluates to 0.5
§ But also supports the // operation
§ And the % operation

Using Big Numbers

• Exponent notation is useful for large (or small) values
§ –22.51e6 is –22.51 * 106 or –22510000
§ 22.51e–6 is 22.51 * 10–6 or 0.00002251

• Python prefers this in some cases
>>> 0.00000000001
1e-11

A second kind
of float literal

Remember:
Values look
like literals

Floats Have Finite Precision

• Try this example:
>>> 0.1+0.2
0.30000000000000004

• The problem is representation error
§ Not all fractions can be represented as (finite) decimals
§ Example: calculators represent 2/3 as 0.666667

• Python does not use decimals
§ It uses IEEE 754 standard (beyond scope of course)
§ Not all decimals can be represented in this standard
§ So Python picks something close enough

Floats Have Finite Precision

• Try this example:
>>> 0.1+0.2
0.30000000000000004

• The problem is representation error
§ Not all fractions can be represented as (finite) decimals
§ Example: calculators represent 2/3 as 0.666667

• Python does not use decimals
§ It uses IEEE 754 standard (beyond scope of course)
§ Not all decimals can be represented in this standard
§ So Python picks something close enough

Again: Expressions vs Values

int versus float

• This is why Python has two number types
§ int is limited, but the answers are always exact
§ float is flexible, but answers are approximate

• Errors in float expressions can propagate
§ Each operation adds more and more error
§ Small enough not to matter day-to-day
§ But important in scientific or graphics apps

(high precision is necessary)
§ Must think in terms of significant digits

Type bool : Logical Statements

• Values are True, False (no more)
§ Capitalization is necessary!
§ Different from most other languages (lower case)

• Operations are not, and, or (and a few more)
§ not b: True if b is false and False if b is true
§ b and c: True if both b and c are true; else False
§ b or c: True if b is true or c is true; else False

• One of the most important Python types

Often Come from Comparisons

• Order comparisons:
§ Less than (1 < 2), less-than-or-equal (1 <= 2)
§ Greater than (1 > 2), greater-than-or-equal (1 >= 2)

• Equality comparisons
§ Equality (1 == 2), Inequality (1 != 2)

§ Warning: Equality is unpredictable on floats
• Can combine with not, and, or

§ Example: (1 < 2) and (4 > 3)

"=" means something else!

Type str: Text data

• Values are any sequence of characters
§ Character is anything we might type in text
§ Could be letters, punctuation, numbers, emoji
§ If you can type it, it is likely a character

• How distinguish text numbers from int, float?
• String literal: sequence of characters in quotes

§ Single quotes: 'Hello World!' (Python prefers)
§ Double quotes: "Hello World!"
§ So 3 is an int, but '3' is a string

Visualizing Strings

• Python treats each character a separate value
§ Can imagine string as a collection of boxes
§ Each character gets its own box

• Examples:
§ 'Hello'
§ 'to do'

• Quotes are not part of the string
§ 'Hello' and "Hello" are the same
§ In fact, 'Hello' == "Hello"

H e l ol

t o od

Operations (For Now)

• Operation +: s1 + s2
§ Glues if s2 to end of s1

§ Called concatenation

§ Evaluates to a string

• Examples:
§ 'ab' + 'cd' is 'abcd'

§ 'ab' + ' ' + 'cd' is 'ab cd'
§ Empty string '' is no boxes

• Operation in: s1 in s2
§ Tests if s1 “a part of” s2

§ If the boxes of s1 are in s2

§ Say s1 a substring of s2

§ Evaluates to a boolean

• Examples:
§ 'a' in 'abcde' is True

§ 'ab' in 'abcde' is True
§ 'ac' in 'abcde' is False

a b dc a b c d

Operator Precedence

• What is the difference between the following?
§ 2*(1+3)
§ 2*1 + 3

• Operations are performed in a set order
§ Parentheses make the order explicit
§ What happens when there are no parentheses?

• Operator Precedence: The fixed order Python
processes operators in absence of parentheses

add, then multiply

multiply, then add

Precedence of Python Operators
• Exponentiation: **

• Unary operators: + –

• Binary arithmetic: * / %

• Binary arithmetic: + –

• Comparisons: < > <= >=

• Equality relations: == !=

• Logical not

• Logical and

• Logical or

• Precedence goes downwards
§ Parentheses highest
§ Logical ops lowest

• Same line = same precedence
§ Read “ties” left to right
§ Example: 1/2*3 is (1/2)*3

Labs are secretly training

you to learn all this

Precedence of Python Operators
• Exponentiation: **

• Unary operators: + –

• Binary arithmetic: * / %

• Binary arithmetic: + –

• Comparisons: < > <= >=

• Equality relations: == !=

• Logical not

• Logical and

• Logical or

• Precedence goes downwards
§ Parentheses highest
§ Logical ops lowest

• Same line = same precedence
§ Read “ties” left to right
§ Example: 1/2*3 is (1/2)*3

Labs are secretly training

you to learn all this

More complex than
• P (parentheses)
• E (exponentiation)
• M (multiplication)
• D (division)
• A (addition)
• S (subtraction)

An Interesting Example

>>> 1 + 2 < 5 + 7
3 < 12
True
>>> 1 + (2 < 5) + 7
1 + True + 7
9 Motivation for

next video

Not an error!

Mixing Types

• Some operators allow us to mix (certain) types
§ Example: 1 + 2.5 is 3.5
§ But 'ab' + 2 is an error

• What is Python doing? It is converting types
§ Addition needs both values same type
§ So it chooses float, not int (Why?)
§ float to int would have to drop or round .5
§ This is a really bad error, so int to float instead
§ Even though some (small) error in that conversion

Type Conversion

• Python can convert between bool, int, float
§ String is difficult and will talk about later
§ Narrow to wide: bool ⇒ int ⇒ float

§ Widening: Convert to a wider type
• Python does automatically if needed
• Example: 1/2.0 evaluates to 0.5 (converts 1 to float)

§ Narrowing: Convert to narrower type
• Python never does this automatically
• They cause information to be lost

Type Casting: Explicit Conversions

• Basic form: type(value)
§ float(2) converts value 2 to type float (value now 2.0)
§ int(2.6) converts value 2.6 to type int (value now 2)
§ Only way to narrow cast

• Can sort of do this with string
§ str(2) converts 2 to type str (value now '2')
§ int('2') converts string '2' to type int (value now 2)

• But we typically do not call this casting
§ Main issue is that it can fail: int('a') is an error
§ Conversions between bool, int, float never fail

