
Loop Invariants

Lecture 23

Announcements for This Lecture

Prelim 2 Assignments

• A6 due TOMORROW
§ Complete it by midnight
§ Also, fill out survey

• A7 due December 10
§ Focus of Thursdays lecture
§ 2.5 weeks including T-Day
§ 2 weeks without the break
§ Extensions are possible!

• Both are very important
§ Each worth 8% of grade

• Thursday at 7:30 pm
§ A–F in Uris G01
§ G-H in Malott 228
§ I–L in Ives 305
§ M-Z in Statler Aud.

• All review material online
§ Similar to previous years
§ Just changed “hard parts”

11/19/19 Loop Invariants 2

Goal For Today

• This lecture is a programming technique
§ Completely independent of Python
§ Will learn it again (exactly) in CS 2110

• Useful tool for ensuring code correctness
§ Some loops are too complicated to debug
§ Relying on watches/traces not enough
§ This technique helps reduce errors at the start

• Preview of what higher level CS is like

11/19/19 Loop Invariants 3

Terminology: Range Notation

• m..n is a range containing n+1-m values
§ 2..5 contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
§ 2..4 contains 2, 3, 4. Contains 4+1 – 2 = 3 values
§ 2..3 contains 2, 3. Contains 3+1 – 2 = 2 values
§ 2..2 contains 2. Contains 2+1 – 2 = 1 values
§ 2..1 contains ???

A: nothing
B: 2,1
C: 1
D: 2
E: something else

What does 2..1 contain?

11/19/19 Loop Invariants 4

Terminology: Range Notation

• m..n is a range containing n+1-m values
§ 2..5 contains 2, 3, 4, 5. Contains 5+1 – 2 = 4 values
§ 2..4 contains 2, 3, 4. Contains 4+1 – 2 = 3 values
§ 2..3 contains 2, 3. Contains 3+1 – 2 = 2 values
§ 2..2 contains 2. Contains 2+1 – 2 = 1 values
§ 2..1 contains ???

• The notation m..n, always implies that m <= n+1
§ So you can assume that even if we do not say it

§ If m = n+1, the range has 0 values

Not the same
as range(m,n)

11/19/19 Loop Invariants 5

Assertions: Tracking Code State

• assertion: true-false statement placed in a program to
assert that it is true at that point
§ Can either be a comment, or an assert command

• invariant: assertion supposed to "always" be true
§ If temporarily invalidated, must make it true again
§ Example: class invariants and class methods

• loop invariant: assertion supposed to be true before
and after each iteration of the loop

• iteration of a loop: one execution of its body
11/19/19 Loop Invariants 6

Assertions versus Asserts

• Assertions prevent bugs
§ Help you keep track of

what you are doing
• Also track down bugs

§ Make it easier to check
belief/code mismatches

• The assert statement is
a (type of) assertion
§ One you are enforcing
§ Cannot always convert a

comment to an assert

x is the sum of 1..n

x ? n 3

x ? n 0

x ? n 1

Comment form
of the assertion.The root

of all bugs!

11/19/19 Loop Invariants 7

Preconditions & Postconditions

• Precondition: assertion
placed before a segment

• Postcondition: assertion
placed after a segment

x = sum of 1..n-1
x = x + n
n = n + 1
x = sum of 1..n-1

precondition

postcondition

1 2 3 4 5 6 7 8

x contains the sum of these (6)

n

n
1 2 3 4 5 6 7 8

x contains the sum of these (10)

Relationship Between Two
If precondition is true, then
postcondition will be true

11/19/19 Loop Invariants 8

Solving a Problem

x = sum of 1..n

n = n + 1
x = sum of 1..n

precondition

postcondition

What statement do you
put here to make the
postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

11/19/19 Loop Invariants 9

Solving a Problem

x = sum of 1..n

n = n + 1
x = sum of 1..n

precondition

postcondition

What statement do you
put here to make the
postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

Remember the new value of n

11/19/19 Loop Invariants 10

Invariants: Assertions That Do Not Change

x = 0; i = 2
while i <= 5:

x = x + i*i
i = i +1

x = sum of squares of 2..5

Invariant:
x = sum of squares of 2..i-1

in terms of the range of integers
that have been processed so far

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

• Loop Invariant: an assertion that is true before and
after each iteration (execution of repetend)

11/19/19 Loop Invariants 11

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ?

Integers that have
been processed:

Range 2..i-1:

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

✗

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

4

3

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

2

2..2

✗
✗
✗

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

4

3

13

4

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

2

2..2

, 3

2..3

✗
✗
✗
✗
✗

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

4

3

13

4

29

5

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

2

2..2

, 3

2..3

, 4

2..4

✗
✗
✗
✗
✗
✗

✗

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

4

3

13

4

29

5

54

6

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

2

2..2

, 3

2..3

, 4

2..4

, 5

2..5

✗
✗
✗
✗
✗
✗

✗
✗

✗

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

4

3

13

4

29

5

54

6

Invariant was always true just
before test of loop condition. So
it’s true when loop terminates

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

2

2..2

, 3

2..3

, 4

2..4

, 5

2..5

✗
✗
✗
✗
✗
✗

✗
✗

✗

Designing Integer while-loops
Process integers in a..b
inv: integers in a..k-1 have been processed
k = a
while k <= b:

process integer k
k = k + 1

post: integers in a..b have been processed

Command to do something

Equivalent postcondition

trueinit cond

k= k +1;false

Process kinvariant

invariant
11/19/19 Loop Invariants 19

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

11/19/19 Loop Invariants 20

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Postcondition: range b..c has been processed
11/19/19 Loop Invariants 21

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

while k <= c:

k = k + 1
Postcondition: range b..c has been processed
11/19/19 Loop Invariants 22

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Invariant: range b..k-1 has been processed
while k <= c:

k = k + 1
Postcondition: range b..c has been processed
11/19/19 Loop Invariants 23

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c
Initialize variables (if necessary) to make invariant true
Invariant: range b..k-1 has been processed
while k <= c:

Process k
k = k + 1

Postcondition: range b..c has been processed
11/19/19 Loop Invariants 24

Finding an Invariant

Make b True if n is prime, False otherwise

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

Command to do something

Equivalent postcondition

11/19/19 Loop Invariants 25

Finding an Invariant

Make b True if n is prime, False otherwise

while k < n:
Process k;

k = k +1
b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

Command to do something

Equivalent postcondition

11/19/19 Loop Invariants 26

Finding an Invariant

Make b True if n is prime, False otherwise

invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:

Process k;

k = k +1
b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n

Command to do something

Equivalent postcondition

11/19/19 Loop Invariants 27

Finding an Invariant

Make b True if n is prime, False otherwise
b = True
k = 2
invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:

Process k;

k = k +1
b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n

Command to do something

Equivalent postcondition

11/19/19 Loop Invariants 28

Finding an Invariant

Make b True if n is prime, False otherwise
b = True
k = 2
invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:

Process k;
if n % k == 0:

b = False
k = k +1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n

Command to do something

Equivalent postcondition

11/19/19 Loop Invariants 29

Finding an Invariant
set x to # adjacent equal pairs in s

while k < len(s):
Process k

k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

k: next integer to process.
Which have been processed?

for s = 'ebeee', x = 2

Finding an Invariant
set x to # adjacent equal pairs in s

while k < len(s):
Process k

k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

k: next integer to process.
Which have been processed? What is the invariant?

for s = 'ebeee', x = 2

Finding an Invariant
set x to # adjacent equal pairs in s

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

Process k

k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

k: next integer to process.
Which have been processed? What is the invariant?

for s = 'ebeee', x = 2

Finding an Invariant
set x to # adjacent equal pairs in s
x = 0

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

Process k

k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

for s = 'ebeee', x = 2

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

k: next integer to process.
What is initialization for k?

Finding an Invariant
set x to # adjacent equal pairs in s
x = 0
k = 1
inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

Process k

k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

for s = 'ebeee', x = 2

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know

Which do we compare to “process” k?
k: next integer to process.
What is initialization for k?

Finding an Invariant
set x to # adjacent equal pairs in s
x = 0
k = 1
inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

Process k
x = x + 1 if (s[k-1] == s[k]) else 0
k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

for s = 'ebeee', x = 2

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know

Which do we compare to “process” k?
k: next integer to process.
What is initialization for k?

Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s
c = ??
k = ??
inv:
while k < len(s):

Process k
k = k+1

c = largest char in s[0..len(s)–1]

1. What is the invariant?

Command to do something

Equivalent postcondition

11/19/19 Loop Invariants 36

Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s
c = ??
k = ??
inv:
while k < len(s):

Process k
k = k+1

c = largest char in s[0..len(s)–1]

1. What is the invariant?

c is largest element in s[0..k–1]

Command to do something

Equivalent postcondition

11/19/19 Loop Invariants 37

Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s
c = ??
k = ??
inv:
while k < len(s):

Process k
k = k+1

c = largest char in s[0..len(s)–1]

1. What is the invariant?

2. How do we initialize c and k?

c is largest element in s[0..k–1]

Command to do something

Equivalent postcondition

A: k = 0; c = s[0]

B: k = 1; c = s[0]

C: k = 1; c = s[1]

D: k = 0; c = s[1]

E: None of the above

11/19/19 Loop Invariants 38

Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s
c = ??
k = ??
inv:
while k < len(s):

Process k
k = k+1

c = largest char in s[0..len(s)–1]

1. What is the invariant?

2. How do we initialize c and k?

c is largest element in s[0..k–1]

Command to do something

Equivalent postcondition

An empty set of characters or integers has no maximum. Therefore,
be sure that 0..k–1 is not empty. You must start with k = 1.

A: k = 0; c = s[0]

B: k = 1; c = s[0]

C: k = 1; c = s[1]

D: k = 0; c = s[1]

E: None of the above

11/19/19 Loop Invariants 39

