

1

3

5

Assertions: Tracking Code State

- assertion: true-false statement placed in a program to assert that it is true at that point
- Can either be a comment, or an assert command
- invariant: assertion supposed to "always" be true - If temporarily invalidated, must make it true again
- Example: class invariants and class methods
- loop invariant: assertion supposed to be true before and after each iteration of the loop
- iteration of a loop: one execution of its body

2

Preconditions \& Postconditions

4

Invariants: Assertions That Do Not Change

- Loop Invariant: an assertion that is true before and after each iteration (execution of repetend)
$x=0 ; i=2$
while $\mathrm{i}<=5$:
$\mathrm{x}=\mathrm{x}+\mathrm{i}^{*} \mathrm{i}$
$\mathrm{i}=\mathrm{i}+\mathrm{l}$
\# x = sum of squares of $2 . .5$

Invariant:

$x=$ sum of squares of 2..i-1
in terms of the range of integers that have been processed so far

The loop processes the range 2.5

6

7

Designing Integer while-loops

1. Recognize that a range of integers $b . . c$ has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
\# Process b..c
Initialize variables (if necessary) to make invariant true
\# Invariant: range b..k-l has been processed
while k <= c :
\# Process k
$\mathrm{k}=\mathrm{k}+\mathrm{l}$
\# Postcondition: range b..c has been processed

9

Finding an Invariant

\# set x to \# adjacent equal pairs in s	Command to do something
$\mathrm{x}=0$	
\# inv: $\mathrm{x}=$ \# adjacent equal pairs in s[0..k-l]	for $\mathrm{s}=$ 'ebeee', $\mathrm{x}=2$
while $\mathrm{k}<\operatorname{len}(\mathrm{s})$: \# Process k	
$\mathrm{k}=\mathrm{k}+\mathrm{l}$ \# $\mathrm{x}=$ \# adjacent equal pairs in s[0..len(s)-1]	Equivalent postcondition
k : next integer to process. What is initialization for k ?	
$\begin{aligned} & \mathrm{A}: \mathrm{k}=0 \\ & \mathrm{~B}: \mathrm{k}=1 \\ & \mathrm{C}: \mathrm{k}=-1 \\ & \mathrm{D}: \mathrm{I} \text { don't know } \end{aligned}$	

11

8

10

Reason carefully about initialization

12

