
While Loops

Lecture 22

Announcements for This Lecture

Assignments Prelim 2

11/14/19 2While-Loops

• A6 due on Wednesday
§ First classes should be done
§ Finish Encoder over weekend

• A7 will be last assignment
§ Will talk about next week
§ Posted on Thursday
§ Some deadline flexibility

• There is lab next week
§ No lab week of Turkey Day

• Prelim, Nov 21st at 7:30
§ Same rooms as last time

• Material up to Nov. 12
§ Recursion + Loops + Classes
§ Study guide is now posted
§ Review Sun. 5pm in Statler

• Conflict with Prelim?
§ Prelim 2 Conflict on CMS
§ LAST DAY TO SUBMIT

Recall: The For-Loop

Create local var x
x = seqn[0]
print(x)
x = seqn[1]
print(x)
…
x = seqn[len(seqn)-1]
print(x)

Write as a for-loop
for x in seqn:

print(x)

• iterable: seqn
• loop variable: x
• body: print(x)

Key ConceptsNot valid
Python

11/14/19 While-Loops 3

Important Concept in CS:
Doing Things Repeatedly

1. Process each item in a sequence
§ Compute aggregate statistics for a dataset,

such as the mean, median, standard deviation, etc.
§ Send everyone in a Facebook group an appointment time

2. Perform n trials or get n samples.
§ A4: draw a triangle six times to make a hexagon
§ Run a protein-folding simulation for 106 time steps

3. Do something an unknown
number of times
§ CUAUV team, vehicle keeps

moving until reached its goal
11/14/19 While-Loops 4

for x in sequence:
process x

for x in range(n):
do next thing

????

Beyond Sequences: The while-loop

while <condition>:
statement 1
…
statement n

condition
true

false

body

• Broader notion of loop
§ You define “more to do”
§ Not limited sequences

• Must manage loop var
§ You create it before loop
§ You update it inside loop
§ For-loop automated it

• Trickier to get right

Vs For-Loop

loop
body

loop
condition

11/14/19 While-Loops 5

while Versus for

For-Loop

def sum_squares(n):
"""Rets: sum of squares
Prec: n is int > 0"""
total = 0

for x in range(n):
total = total + x*x

While-Loop

def sum_squares(n):
"""Rets: sum of squares
Prec: n is int > 0"""
total = 0
x = 0
while x < n:

total = total + x*x
x = x+1

Must remember
to increment

11/14/19 While-Loops 6

The Problem with While-Loops

• Infinite loops are possible
§ Forget to update a loop variable
§ Incorrectly write the boolean expression

• Will hang your program
§ Must type control-C to abort/quit

• But detecting problems is not easy
§ Sometimes your code is just slow
§ Scientific computations can take hours

• Solution: Traces
11/14/19 While-Loops 7

Tracing While-Loops

print('Before while')
total = 0
x = 0
while x < n:

print('Start loop '+str(x))
total = total + x*x
x = x + 1
print('End loop ')

print('After while')

Output:
Before while
Start loop 0
End loop
Start loop 1
End loop
Start loop 2
End loop
After while

Important

Important
11/14/19 While-Loops 8

How to Design While-Loops

• Many of the same rules from for-loops
§ Often have an accumulator variable
§ Loop body adds to this accumulator

• Differences are loop variable and iterable
§ Typically do not have iterable

• Breaks up into three design patterns
1. Replacement to range()
2. Explicit goal condition
3. Boolean tracking variable

11/14/19 While-Loops 9

Replacing the Range Iterable
range(a,b)

i = a
while i < b:

process integer i
i = i + 1

store in count # of '/'s in String s
count = 0
i = 0
while i < len(s):

if s[i] == '/':
count= count + 1

i= i +1
count is # of '/'s in s[0..s.length()-1]

range(c,d+1)
i= c
while i <= d:

process integer i
i= i + 1

Store in double var. v the sum
1/1 + 1/2 + …+ 1/n
v = 0; # call this 1/0 for today
i = 1
while i <= n:

v = v + 1.0 / i
i= i +1

v= 1/1 + 1/2 + …+ 1/n
11/14/19 While-Loops 10

Using the Goal as a Condition

def prompt(prompt,valid):
"""Returns: the choice from a given prompt.

This function asks the user a question, and waits for a response. It
checks if the response is valid against a list of acceptable answers.
If it is not valid, it asks the question again. Otherwise, it returns
the player's answer.

Precondition: prompt is a string
Precondition: valid is a tuple of strings"""
pass # Stub to be implemented

Tells you the
stop condition

11/14/19 While-Loops 11

Using the Goal as a Condition

def prompt(prompt,valid):
"""Returns: the choice from a given prompt.

Preconditions: prompt is a string, valid is a tuple of strings"""
response = input(prompt)

Continue to ask while the response is not valid.
while not (response in valid):

print('Invalid response. Answer must be one of ')+str(valid)
response = input(prompt)

return response

11/14/19 While-Loops 12

Using a Boolean Variable

def roll_past(goal):
"""Returns: The score from rolling a die until passing goal.

This function starts with a score of 0, and rolls a die, adding the
result to the score. Once the score passes goal, it stops and
returns the result as the final score.
If the function ever rolls a 1, it stops and the score is 0.

Preconditions: goal is an int > 0"""
pass # Stub to be implemented

Condition is
too complicated

Introduce a boolean variable.
Use it to track condition.

11/14/19 13While-Loops

Using a Boolean Variable

def roll_past(goal):
"""Returns: The score from rolling a die until passing goal."""
loop = True # Keep looping until this is false
score = 0
while loop:

roll = random.randint(1,6)
if roll == 1:

score = 0; loop = False
else:

score = score + roll; loop = score < goal
return score

Track the
condition

11/14/19 While-Loops 14

Advantages of while vs for

table of squares to N
seq = []
n = floor(sqrt(N)) + 1
for k in range(n):

seq.append(k*k)

table of squares to N
seq = []
k = 0
while k*k < N:

seq.append(k*k)
k = k+1

A for-loop requires that
you know where to stop
the loop ahead of time

A while loop can use
complex expressions to
check if the loop is done

11/14/19 While-Loops 15

Advantages of while vs for

Table of n Fibonacci nums
fib = [1, 1]
for k in range(2,n):

fib.append(fib[-1] + fib[-2])

Table of n Fibonacci nums
fib = [1, 1]
while len(fib) < n:

fib.append(fib[-1] + fib[-2])

Sometimes you do not use
the loop variable at all

Do not need to have a loop
variable if you don’t need one

Fibonacci numbers:
F0 = 1
F1 = 1
Fn = Fn–1 + Fn–2

11/14/19 While-Loops 16

Difficulties with while

def rem3(lst):
"""Remove all 3's from lst"""
i = 0
while i < len(lst):

no 3’s in lst[0..i–1]
if lst[i] == 3:

del lst[i]
i = i+1

>>> a = [3, 3, 2]
>>> rem3(a)
>>> a

11/14/19 While-Loops 17

Be careful when you modify the loop variable

A: [2]
B: [3]
C: [3,2]
D: []
E: something else

Difficulties with while

def rem3(lst):
"""Remove all 3's from lst"""
i = 0
while i < len(lst):

no 3’s in lst[0..i–1]
if lst[i] == 3:

del lst[i]
i = i+1

>>> a = [3, 3, 2]
>>> foo(a)
>>> a

11/14/19 While-Loops 18

Be careful when you modify the loop variable

A: [2]
B: [3]
C: [3,2]
D: []
E: something else

Correct

Difficulties with while

def rem3(lst):
"""Remove all 3's from lst"""
i = 0
while i < len(lst):

no 3’s in lst[0..i–1]
if lst[i] == 3:

del lst[i]
else:

i = i+1

def rem3(lst):
"""Remove all 3's from lst"""
while 3 in lst:

lst.remove(3)

11/14/19 While-Loops 19

Be careful when you modify the loop variable

Stopping
point keeps
changing

The stopping condition is not
a numerical counter this time.

Simplifies code a lot.

Application: Convergence

• How to implement this function?
def sqrt(c):

"""Returns the square root of c"""
• Consider the polynomial f(x) = x2 – c

§ Value sqrt(c) is a root of this polynomial
• Suggests a use for Newton’s Method

§ Start with a guess at the answer
§ Use calculus formula to improve guess

11/14/19 While-Loops 20

Example: Sqrt(2)

• Actual answer: 1.414235624
• xn+1 = xn/2 + c/2xn

• x0 = 1 # Rough guess of sqrt(2)
• x1 = 0.5 + 1 = 1.5
• x2 = 0.75 + 2/3 = 1.41666
• x3 = 0.7083 + 2/2.833 = 1.41425
11/14/19 While-Loops 21

When Do We Stop?

• We don’t know the sqrt(c)
§ This was thing we wanted to compute!
§ So we cannot tell how far off we are
§ But we do know sqrt(c)2 = c

• So square approximation and compare
§ while x*x is not close enough to c
§ while abs(x*x – c) > threshold

11/14/19 While-Loops 22

When Do We Stop?

• We don’t know the sqrt(c)
§ This was thing we wanted to compute!
§ So we cannot tell how far off we are
§ But we do know sqrt(c)2 = c

• So square approximation and compare
§ while x*x is not close enough to c
§ while abs(x*x – c) > threshold

While-loop computes until
the answer converges

11/14/19 While-Loops 23

The Final Result

def sqrt(c,err=1e-6):
"""Returns: sqrt of c with given margin of error.

Preconditions: c and err are numbers > 0"""
x = c/2.0

while abs(x*x-c) > err:
Get xn+1 from xn

x = x/2.0+c/(2.0*x)

return x
11/14/19 While-Loops 24

Using while-loops Instead of for-loops

Advantages

• Better for modifying data
§ More natural than range
§ Works better with deletion

• Better for convergent tasks
§ Loop until calculation done
§ Exact steps are unknown

• Easier to stop early
§ Just set loop var to False

Disadvantages

• Performance is slower
§ Python optimizes for-loops
§ Cannot optimize while

• Infinite loops more likely
§ Easy to forget loop vars
§ Or get stop condition wrong

• Debugging is harder
§ Will see why in later lectures

11/14/19 While-Loops 25

Our Goal From Here: Sorting

11/14/19 While-Loops 26

2 5 6 3 4
0 i

2 5 3 6 5
0 i

2 3 5 6 5
0 i

2 3 5 6 4
0 i

2 3 5 6 4
0 i

2 4 5 4 6
0 i

2 3 4 5 6
0 i

2 3 4 5 6
0

Will see how to
do this with
while-loops

Optional Exercise

11/14/19 While-Loops 27

The Game of Pig: A Random Game

• Play progresses clockwise
• On your turn, throw the die:

§ If roll 1: lose turn, score zero
§ Anything else: add it to score

• Can also roll again (and lose)
• If stop, score is “banked”

• First person to 100 wins

11/14/19 While-Loops 28

The Game of Pig: A Random Game

• Play progresses clockwise
• On your turn, throw the die:

§ If roll 1: lose turn, score zero
§ Anything else: add it to score

• Can also roll again (and lose)
• If stop, score is “banked”

• First person to 100 wins

Easy to write without classes

11/14/19 While-Loops 29

Designing an AI for Opponent is Easy

11/14/19 While-Loops 30

Throws Survial Expected Gain Expected Value
1 83% 3.33 3.33
2 69% 2.78 6.11
3 58% 2.32 8.43
4 48% 1.92 10.35
5 40% 1.61 11.96
6 33% 1.34 13.30
7 28% 1.12 14.42
8 23% .93 15.35
9 19% .77 16.12

10 16% .65 16.77
… … … …
50 0.01% 0.0004 19.998

Designing an AI for Opponent is Easy

11/14/19 While-Loops 31

Throws Survial Expected Gain Expected Value
1 83% 3.33 3.33
2 69% 2.78 6.11
3 58% 2.32 8.43
4 48% 1.92 10.35
5 40% 1.61 11.96
6 33% 1.34 13.30
7 28% 1.12 14.42
8 23% .93 15.35
9 19% .77 16.12

10 16% .65 16.77
… … … …
50 0.01% 0.0004 19.998

Strategy:
Bank at 20

The Primary Function

def play(target):
"""Plays a single game of Pig to target score.

Precondition: target is an int > 0"""
Initialize the scores
while no one has reached the target

Play a round for the player
If the player did not reach the target

Play a round for the opponent
Display the results

11/14/19 While-Loops 32

The Player Round

def player_turn():
""" Runs a single turn for the player."""
while the player has not stopped

Roll the die
If is a 1

Set score to 0 and stop the turn
else

Add the to the score
Ask the player whether to continue

Return the score

Prompt helper

11/14/19 While-Loops 33

The Opponent Round

def roll_past(goal):
"""Returns: The score from rolling a die until passing goal."""
loop = True # Keep looping until this is false
score = 0
while loop:

roll = random.randint(1,6)
if roll == 1:

score = 0; loop = False
else:

score = score + roll; loop = score < goal
return score

Look familiar?

11/14/19 While-Loops 34

