
Classes and Subclasses

Review 2

Class Definition

class <name>(<optional superclass>):
"""Class specification"""
class variables (format: Class.variable)
initializer (__init__)
special method definitions
other method definitions

5/13/18 Review 2 2

Class type to extend

• Every class must
extend something

• Most classes extend
object implicitly

Attribute Invariants

• Attribute invariants are important for programmer
§ Should look at them while writing methods
§ Anyone reading the code will understand how the class works

• Constructors initialize the attributes to satisfy invariants
§ Can use assert statements to enforce invariants

class Point(object):
"""An instance is a 3D point in space

x: the x value of the point [float]
y: the y value of the point [float]
z: the z value of the point [float] """

5/13/18 Review 2 3

Constructors

• Function that creates new instances of a class
• Constructor and class share the same name
• Creates object folder, initializes attributes, returns ID
class Point(object):

…
def __init__(self, x, y, z):

"""Initializer: makes a Point object with x, y, z values"""
self.x = x
self.y = y
self.z = z

5/13/18 Review 2 4

Special Methods

• Start/end with underscores
§ __init__ for initializer

§ __str__ for str()
§ __repr__ for repr()

• Predefined by Python
§ You are overriding them

§ Defines a new behavior

class Point(object):
"""Instances are points in 3D space"""
…

def __init__(self, x, y, z):
"""Initializer: makes new Point"""
…

def __str__(self):
"""Returns: string with contents""”
…

def __repr__(self):
"""Returns: unambiguous string""”
…

5/13/18 Review 2 5

Operator Overloading

• Methods for operators
§ __add__ for +
§ __mul__ for *
§ __mod__ for %
§ __eq__ for ==
§ __lt__ for <

• Can then directly use the
operators on objects
§ p1 == p2
§ Difference between == and is?

class Point(object):
"""Instances are points in 3D space"""
…

def __add__(self, p):
"""Adds two points together"""
…

def __mul__(self, p):
"""Multiplies two points together"""
…

def __eq__(self, p):
"""Returns: whether two points are
equivalent"""

5/13/18 Review 2 6

Writing and Calling Methods

• Must include the keyword
self to reference each
individual instance

• Call the method with the
object in front
§ <object>.<method>(<args>)
§ p1.quadrant()
§ dist = p1.distance(p2)
§ Object is the argument for the

parameter self

class Point(object):
"""Instances are points in 3D space"""
…

def __init__(self, x, y, z):
"""Initializer: makes new Point"""
…

def quadrant(self):
"""Returns: the quadrant occupied

by the point""”

def distance(self, p):
"""Returns: the distance between

two points"""

5/13/18 Review 2 7

Optional Arguments

• Can assign default values
for method’s parameters
§ Instead of just writing the

parameter, put an
assignment

§ Calling method without an
argument for that

• Examples using first init
§ p = Point() #(0, 0, 0)
§ p = Point(1, 2) #(1, 2, 0)
§ p = Point(y=3, z=4) #(0, 3, 4)

class Point(object):
"""Instances are points in 3D space"""
…

def __init__(self, x=0, y=0, z=0):
"""Initializer: makes new Point"""
…

class Point(object):
"""Instances are points in 3D space"""
…

def __init__(self, x, y, z=0):
"""Initializer: makes new Point"""
…

5/13/18 Review 2 8

Modified Question from Fall 2010

• An object of class Course (next slide) maintains a
course name, the instructors involved, and the list of
registered students, also called the roster.
1. State the purpose of an initializer. Then complete the

body of the initializer of Course, fulfilling this purpose.

2. Complete the body of method add of Course
3. Complete the body of method __eq__ of Course.

4. Complete the body of method __ne__ of Course.
Your implementation should be a single line.

5/13/18 Review 2 9

Modified Question from Fall 2010
class Course(object):

"""An instance is a course at Cornell.
Maintains the name of the course, the roster
(list of netIDs of students registered for it),
and a list of netIDs of instructors.

name: Course name [str]
instructors: instructor net-ids without duplicates

[nonempty list of string]
roster: student net-ids

[list of string, can be empty]"""

def __init__(self, name, b):
"""Instance w/ name, instructors b, no students.
It must COPY b. Do not assign b to instructors.
Pre: name is a string, b is a non-empty list"""
IMPLEMENT ME

def add(self, n):
"""If student with netID n is not in roster, add
student. Do nothing if student is already there.
Precondition: n is a valid netID."""
IMPLEMENT ME

def __eq__(self, ob):
"""Return True if ob is a Course with the same
name and same set of instructors as this;
otherwise return False"""
IMPLEMENT ME

def __ne__(self, ob):
"""Return False if ob is a Course with the same
name and same set of instructors as this;
otherwise return True"""
IMPLEMENT ME IN ONE LINE

5/13/18 Review 2 10

Modified Question from Fall 2010

1. State the purpose of a initializer. Complete the body of
the constructor of Course, fulfilling this purpose.
§ The purpose is to initialize instance attributes so that the

invariants in the class are all satisfied.

def __init__(self, name, b):
"""Instance w/ name, instructors b, no students.
Pre: name is a string, b is a non-empty list"""
self.name = name
self.instructors = b[:] # Copies b
self.roster = [] # Satisfy the invariant!

5/13/18 Review 2 11

Modified Question from Fall 2010

2. Complete the body of method add of Course
def add(self,n):

"""If student with netID n is not in roster, add
student. Do nothing if student is already there.
Precondition: n is a valid netID."""
if not n in self.roster:

self.roster.append(n)

5/13/18 Review 2 12

Modified Question from Fall 2010

3. Complete body of method __eq__ of Course.
def __eq__(self, ob):

"""Return True if ob is a Course with the same name and same
set of instructors; otherwise return False"""
if not (isinstance(ob,Course)):

return False
Check if instructors in ob are in this
for inst in ob.instructors:

if not inst in self.instructors:
return False

If instructors of ob are those in self, same if length is same
return self.name==ob.name and len(self.instructors)==len(ob.instructors)

5/13/18 Review 2 13

Modified Question from Fall 2010

4. Complete body of method __ne__ of Course.
Your implementation should be a single line.

def __ne__(self,ob):
"""Return False if ob is a Course with the same name and
same set of instructors as this; otherwise return True"""
IMPLEMENT ME IN ONE LINE
return not self == ob # Calls __eq__

5/13/18 Review 2 14

Subclasses

• Subclass conceptually is a subgroup of its parent class
§ Cat and Dog are both Animals, but are distinct

• Inherits attributes and methods of parent class
§ Can include additional ones that are unique to subclass
§ Overrides methods such as __init__ to add functionality
§ When looking for an attribute/method, will resolve in the

name in the following order (object is built-in class):
object → class → parent class → parent of parent → object

• isinstance(<obj>, <class>)
§ True if <obj>’s class is <class> or is a subclass of <class>
§ isinstance(p, Point)

5/13/18 Review 2 15

Modified Question from Fall 2010

• An instance of Course always has a lecture, and it may
have a set of recitation or lab sections, as does CS 1110.
Students register in the lecture and in a section (if there
are sections).

• For this we have two other classes: Lecture and Section.
We show only components that are of interest for this
question.

• Make sure invariants are enforced at all times

5/13/18 Review 2 16

Modified Question from Fall 2010
class Lecture(Course):

"""Instance is a lecture, with list of sections
seclist: sections associated with lecture.

[list of Section; can be empty]
"""

def __init__(self, n, ls):
"""Instance w/ name, instructors ls, no students.
It must COPY ls. Do not assign ls to instructors.
Pre: name is a string, ls is a nonemepty list"""
super().__init__(n, ls)
self.seclist = []

class Section(Course):
"""Instance is a section associated w/ a lecture""”

mainlecture: lecture this section is associated.
[Lecture; should not be None]"""

def __init__(self, n, ls, lec):
"""Instance w/ name, instructors ls, no
students AND primary lecture lec.
Pre: name a string, ls list, lec a Lecture"""
IMPLEMENT ME

def add(self,n):
"""If student with netID n is not in roster of
section, add student to this section AND the
main lecture. Do nothing if already there.
Precondition: n is a valid netID."""
IMPLEMENT ME

5/13/185/13/18 Review 2 17

Modified Question from Fall 2010

def __init__(self, n, ls, lec):
"""Instance w/ name, instructors ls
no students AND main lecture lec.
Pre: name a string, ls list,
lec a Lecture"""
super().__init__(n,ls)
self.mainlecture = lec

def add(self,n):
"""If student with netID n is not in
roster of section, add student to
this section AND the main lecture.
Do nothing if already there.
Precondition: n is a valid netID."""
Calls old version of add to
add to roster
super().add(self, n)
Add to lecture roster
self.mainlecture.add(n)

5/13/18 Review 2 18

Two Example Classes
class A(object):

x=3
y=5
def __init__(self,y):

self.y = y

def f(self):
return self.g()

def g(self):
return self.x+self.y

class B(A):
y=4
z=10
def __init__(self,x,y):

self.x = x
self.y = y

def g(self):
return self.x+self.z

def h(self):
return 42

Review 2 19

Execute:
>>> a = A(1)
>>> b = B(7,3)

Example from Fall 2013

12/8/13 20Review 2

A

__init__()
f()
g()

B

x 3
y 5

__init__()
h()
g()

y 4
z 10

id3

x 7

B

y 3

id2

y 1

A

a id2 b id3

Execute:
>>> a = A(1)
>>> b = B(7,3)

Example from Fall 2013

12/8/13 21Review 2

A

__init__()
f()
g()

B

x 3
y 5

__init__()
h()
g()

y 4
z 10

id3

x 7

B

y 3

id2

y 1

A

a id2 b id3

What is…
(1) a.y 1 (2) a.z ERROR
(3) b.x 7 (4) B.x 3

Example from Fall 2013

12/8/13 22Review 2

A

__init__()
f()
g()

B

x 3
y 5

__init__()
h()
g()

y 4
z 10

id3

x 7

B

y 3

id2

y 1

A

a id2 b id3

What is…
(1) a.y 1 (2) a.z ERROR
(3) b.x 7 (4) B.x 3

Example from Fall 2013

12/8/13 23Review 2

A

__init__()
f()
g()

B

x 3
y 5

__init__()
h()
g()

y 4
z 10

id3

x 7

B

y 3

id2

y 1

A

a id2 b id3

What is…
(1) a.f() 4 (2) a.h() ERROR
(3) b.f() 17 X (4) b.g() 17

Example from Fall 2013

12/8/13 24Review 2

A

__init__()
f()
g()

B

x 3
y 5

__init__()
h()
g()

y 4
z 10

id3

x 7

B

y 3

id2

y 1

A

a id2 b id3

What is…
(1) a.f() 4 (2) a.h() ERROR
(3) b.f() 17 X (4) b.g() 17

