Last Name: First: Netid: Section

CS 1110 Prelim 1 October 15th, 2015

This 90-minute exam has 6 questions worth a total of 100 points. Scan the whole test before starting.
Budget your time wisely. Use the back of the pages if you need more space. You may tear the pages
apart; we have a stapler at the front of the room.

It is a violation of the Academic Integrity Code to look at any exam other than your
own, to look at any other reference material, or to otherwise give or receive unautho-
rized help.

You will be expected to write Python code on this exam. We recommend that you draw vertical
lines to make your indentation clear, as follows:

def foo():
if something:

do something
do more things

do something last

You should not use recursion on this exam. Beyond that, you may use any Python feature that you
have learned about in class (if-statements, try-except, lists, for-loops and so on), unless directed
otherwise.

Question | Points | Score

1 2
2 18
3 18
4 18
5 22
6 22

Total: 100

The Important First Question:

1. [2 points| Write your last name, first name, netid, and lab section at the top of each page.

Last Name:

First: Netid: Section

Reference Sheet

Throughout this exam you will be asked questions about strings and lists. You are expected to
understand how slicing works. In addition, the following functions and methods may be useful.

String Functions and Methods

Function Description
or Method

len(s) Returns: number of characters in s; it can be 0.

ain s Returns: True if the substring a is in s; False otherwise.

s.find(s1) Returns: index of the first character of the FIRST occurrence of s1 in s
(-1 if s1 does not occur in s).

s.find(s1,n) Returns: index of the first character of the first occurrence of sl in s
STARTING at position n. (-1 if s1 does not occur in s from this position).

s.rfind(s1) Returns: index of the first character of the LAST occurrence of sl in s
(-1 if s1 does not occur in s).

s.rfind(s1,n) Returns: index of the first character of the last occurrence of s1 in s

STARTING at position n. (-1 if s1 does not occur in s from this position).

s.count(s1)

Returns: number of (non-overlapping) occurrences of substring s1 in s.

s.isalpha(Q)

Returns: True if s is not empty and its elements are all letters; it returns
False otherwise.

s.isdigitQ Returns: True if s is not empty and its elements are all numbers; it
returns False otherwise.

s.replace(a,b) | Returns: A copy of s where all instances of substring a are replaced
with the substring b.

s.strip(Q) Returns: A copy of s with all spaces at either the beginning or end

removed from s.

List Functions and Methods

Function Description
or Method

len(x) Returns: number of elements in list x; it can be 0.

y in x Returns: True if y is in list x; False otherwise.

x.1index(y) Returns: index of the FIRST occurrence of y in x (an error occurs if y
does not occur in x).

x.count (y) Returns: number of times y appears in the list x.

x.append (y) Adds y to the end of list x.

x.insert(i,y) | Inserts y at position i in list x, shifting later elements to the right.

x.remove (y) Removes the first item from the list whose value is y. (an error occurs if y
does not occur in x).

x.sort () Sorts the elements of x according to the regular Python order.

The last four list methods are all procedures. They return the value None.

Page 2

Last Name: First: Netid: Section

2. [18 points total| Short Answer Questions.

(a) [6 points|] What is the definition of a type in Python? List at least four examples of types
that we have seen in class.

(b) [4 points] What is an expression? What is a statement? Give an example of each.

(c) |4 points| Explain the purpose of preconditions in a function specification. Why are they
necessary in Python?

(d) [4 points| Consider the function foo defined below.
def foo():

return 5

What are the contents of the variables x and y after the assignments below? Explain the
difference between the two.

foo()
foo

X

y

Page 3

Last Name: First: Netid: Section

3. |18 points| String Slicing. The game publisher Ubisoft has managed to buy the studio
BioWare, and is changing the name of the entire company to UbiWare. As part of their com-
pany transition, they need to issue new e-mail addresses for all employees. The new e-mails
should have the same names as the old ones, but in a different format.

e UbiSoft e-mails have the form last.first@ubisoft.com
e BioWare e-mails have the form first.middle.last@bioware.com

e The new UbiWare e-mails will have the form first.last@ubiware.com
Complete the function specified below

def make_email(s):

Returns: A string representing the new e-mail for s.

The e-mail will have the UbiWare format described above.

Examples:
make_email ('evans.bob@ubisoft.com') is 'bob.evans@ubiware.com'

make_email('fred.e.smith@bioware.com') is 'fred.smith@ubiware.com'

Precondition: s is a string representing a Ubisoft or a BioWare e-mail.

Page 4

Last Name: First: Netid: Section

4. [18 points total| Errors and Testing.

Throughout this question, you will work with string lists. A string list looks like a list, but it is
actually a string. They are useful because it is much easier to send text over the Internet than
it is to send lists (for the same reason that a JSON is a string, but looks like a dictionary).

A string list is string that starts and ends with square bracket characters, and contains a
sequence of digits separated by commas. A string list has no spaces or characters other than
digits or commas. So '[1,2,3]" is a valid string list, but '[1, 2, 3]' and '[1.5,2,3]"' are
not. The empty brackets ' [1' is also a valid string list. String lists have the following functions:

def is_slist(s):
"""Return: True if the string s is a string list; False otherwise.

Precondition: s is a string"""

def count_slist(s,value):
"""Return: The number of occurrences of value in string list s.
Example: count_slist('[1,2,1]',1) returns 2, count_slist('[1,2,1]',3) returns O

Preconditions: s is a string list, value is an int."""

Do not implement these functions. Use their specifications to answer the questions below.

(a) [8 points| Provide at least four different test cases to verify that the function count_slist
is working correctly. For each test case provide:
e The input, or function arguments.
e The expected output, or what the function should return.

e A short explanation of why that test is important, and different from the others.

(b) [4 points| Write one or more assert statements to enforce the preconditions of the function
count_slist. Your assert statements do not need to have error messages.
Hint: You may want to use is_slist to help with this problem.

Page 5

First:

Netid: Section

(c) [6 points] The function defined below is buggy and does not work. There are (at least) two

bugs in it. To help find the bugs, we have added several watch statements throughout the
code. The result of running the code with these watch statements is shown to the right.
Using this information as a guide, identify and fix the two bugs. Explain your fixes below.

Hint: Do not “fix” the line marked NOT A BUG.

def get_slist(s,pos):
"""Returns: The int at position pos

The result is an int, not a string.

Examples:
get_slist('[1,2]',0) is 1
get_slist('[1,2]"',1) is 2

Preconditions: s a string list,
pos is an integer less than the
number of ints in s"""

Replace] with , to aid search

Ex: '[1,2,3]' becomes '[1,2,3,'
s.replace(']"',"',")
print 's = '+s

Find first item in the list

Mark start of item (after the [)
start = 1

Comma marks end of item

end = s.index(',"')

print 'end = '+str(end)

Move forward through commas
start is item, end is comma
for x in range(pos):

print 'x = '+str(x)

start = end

print 'start = '+str(start)
end = s.index(',',start+1)
print 'end = '+str(end)

Precond. guarantees we can slice
slice = s[start:end] # NOT A BUG
print 'slice = '+slice

return int(slice)

Page 6

>>> get_slist('[1]',0)

s = [1]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 19, in get_slist

end = s.index(',"')
ValueError: substring not found
>>> get_slist('[1,2,3]',1)

s = [1,2,3]
end = 2

x =0
start = 2
end = 4
slice = ,2

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 34, in get_slist

return int(slice)

invalid value for int:

ValueError: ',2!

Last Name: First: Netid: Section

5. [22 points| Call Frames.

Consider the following function definition and specification.

def reverse(q):

"""Return: a copy of q, reversed id1
Precondition: q is a list""" p id1 list
r =[] 1
for x in q: 2 0 5
r.insert(0,x) 3
1 7
return r 4

Assume that p = [5,7] is a global variable that stores a reference to a list in heap space, as
shown above. On this page and the next, diagram the evolution of the call

q = reverse(p)

Diagram the state of the call frame for the function reverse when it starts, for each line
executed, and when the frame is erased. You do not need to draw any other call frames;
you can ignore the frame for insert. We have already drawn the first step for you. There are
eight more diagrams to draw, each separated by a dotted line.

In addition to the call frame, draw the state of global space and heap space. You are allowed
to write “unchanged” if no changes were made to either global or heap space.

Call Frames Global Space Heap Space
reverse 1 - id1
p | idl list
id1
1 0 5
1 7

Page 7

Last Name: First: Netid: Section

Call Frames Global Space Heap Space

Page 8

Last Name: First: Netid: Section

6. [22 points total] Objects and Functions.

Remember the class RGB from Assignment 3. Objects of this class have three attributes: red,
green,and blue. These values must be integers between 0 and 255; assigning any other value
to them will result in an error.

As some of you may have realized, RGB actually has another attribute: alpha. This attribute
has the same restriction as the others: it must be an integer between 0 and 255. This means
that when you create an RGB object, the proper constructor call is RGB(r,g,b,a) (do not worry
about referencing colormodel for this question). We ignored this attribute in Assignment 3,
but we will use it in this part of the test.

The alpha attribute is used for color composition. Each pixel on your computer monitor can
only show only one color at a time. If we want to show multiple images on top of each other,
we have to combine the colors together.

(a) [10 points| The simplest form of color composition is straight addition. We add the two

red values to get the new red, the two green values to get the new green, and so on. The
result of this is very similar to mixing colors in primary school, as shown below.

@+A=D

Note that the attribute invariants can never be violated. If adding together two color
results in an attribute that is greater than 255, we use the value of 255 instead. With this
in mind, implement the following procedure according to the specification.

def add_color(coloril,color2):
Adds the color colorl to color2 and stores the result in colorl.

Addition is on each atttribute (including alpha) as described above.
This function is a PROCEDURE and has no return value.

Preconditions: colorl and color2 are RGB objects.

Page 9

Last Name: First: Netid: Section

(b) [12 points] A more popular form of color composition is alpha-blending. This allows one
image to be transparent on top of another. The attribute alpha represents the amount of
transparency. An alpha of 255 means the color is completely opaque, while an alpha of 0
means the color is completely transparent.

To perform alpha-blending, you must convert the red, green, blue, and alpha values to
the range 0 to 1, just as in Assignment 3. You then apply the following formula:

R =o1R; + (1 —a1)Rs Combine red attributes of colors 1 and 2
G'=a1G1 + (1 —a1)Ge Combine green attributes of colors 1 and 2
B' =a1B;+ (1 —a1)Bs Combine blue attributes of colors 1 and 2
o =+ (1 —aq)ae Combine alpha attributes of colors 1 and 2
In the formula above, Ry, G1, ... are the attributes of the first color, Ro, Ga, ... are
the attributes of the second color, and R’, G’, ... are the attributes of the new color.

Remember to convert back to the range 0..255 when done.
In practice, alpha-blending looks like the picture below.

@+A=-R

Use this formula (and what you know from Assignment 3) to implement the function below.

def alpha_blend(colorl,color?2):
Returns: a new color that is the blend of colorl and color2.

Blending follows the rules of the formula above.

Preconditions: colorl and color2 are RGB objects.

Page 10

