Last Name: First Name: Cornell NetID, all caps:

CS 1110 Final Exam May 15th, 2014

This 150-minute exam has 6 questions worth a total of 60 points. When permitted to begin, scan
the whole test before starting. Budget your time wisely. Use the back of the pages if you need
more space. You may tear the pages apart; we have a stapler at the front of the room.

If a question does not explicitly ask for you to write an invariant, you don’t have to for that
problem. However, we strongly recommend that you provide comments explaining the meaning of
your variables if you think they might be unclear to the graders.

The second page of this exam gives you the specifications for some useful functions.

It is a violation of the Academic Integrity Code to look at any exam other than
your own, to look at any other reference material, or to otherwise give or receive
unauthorized help.

We also ask that you not discuss this exam with students who are scheduled to take
a later makeup.

Academic Integrity is expected of all students of Cornell University at all times, whether in the
presence or absence of members of the faculty. Understanding this, I declare I shall not give, use
or receive unauthorized aid in this examination.

Signature: Date




Last Name:

First Name: Cornell NetID:

For reference:

str.find(substr)

Returns: index of first occurrence of string substr in string str (-1 if
not found)

str.find(substr, i)

Returns: index of first occurrence of string substr in string str that
occurs at or after index i (-1 if not found)

s.split(sep)

Returns: a list of the words in string s, using sep as the delimiter
(whitespace if sep not given)

s.join(slist)

Returns: a string that is the concatenation of the strings in list slist
separated by string s

s.lower() Returns: a copy of s with all letters in it converted to lowercase
s.upper () Returns: a copy of s with all letters in it converted to uppercase
range (n) Returns: the list [0, 1, 2, ., n-1]

1t.append(item)

Adds item to the end of list 1t

1t.remove(obj)

Remove the object obj from list 1t. Does not return a value

1t.index(item)

Returns: index of first occurrence of item in list 1t; raises an error if
item is not found. (There’s no “find” for lists.)

1t[i:]]

Returns: A new list [1t[i], 1t[i+1], ..., 1t[j-11] under ordinary
circumstances. Returns [] if i > len(1t)

Question | Points | Score
1 2
2 4
3 10
4 12
5 22
6 10
Total: 60

Page 2




Last Name:

First

The Important First Question:

Name:

Cornell NetID:

1. [2 points] When allowed to begin, write your last name, first name, and Cornell NetID at the
top of each page.

2. [4 points] Objects. Consider the following code (docstrings omitted for exam brevity, line
numbers added for reference).

©O© 0 N O 0> W N -

T
N —~ O

class Prof(object):
def __init__(self, n):
self.lname = n

Prof ("Schlee")
Prof ("Schmarschner")

1j12
srm2

lecturingprof = srm2
lecturingprof.wise = True
lecturingprof = 1j12

print "Is Prof " + srm2.lname + " wise? " + str(srm2.wise)
print "Is Prof " + 1j12.lname + " wise? " + str(1ljl2.wise)

List all output and/or errors that would be generated by running this code, in the order they
are produced. For each thing you write, indicate what line number produces it.

In the case of errors, it suffices to explain what the problem is — you don’t know have to know

precisely what Python would call the error or print out.

Hint: line 9 does not cause an error. It would be wise (ha!) to understand why before proceed-
ing; what does Python always do when asked to assign to a variable that doesn’t exist?

Page 3



Last Name: First Name: Cornell NetID:

3. [10 points] String processing, loops. We say that a string is a sentence if it consists of
“words” (non-empty sequences of non-space characters) separated by single spaces, with no
spaces at the beginning or end of the string. A sentence is chunked by delimiter d1 if an even
number of its words are d1, and no two delimiters are consecutive. Here’s an example of a
sentence that is chunked by “!”.

"The ! Big Red Barn ! was ! blue !I"

The interesting spans of a chunked sentence are the sequences of words that appear between
each odd occurrence of d1 and the next occurrence of d1. So, “Big Red Barn” is an interesting
span because it occurs between the 1st and 2nd “!”. “was” is not an interesting span because
it occurs after the 2nd “!I” (and before the 3rd one).

The highlighted version of a chunked sentence is one where the delimiters have been removed,
every word in an interesting span has been capitalized, and every word not in an interesting
span is in lowercase. For example, the highlighted version of the chunked sentence above is

"the BIG RED BARN was BLUE"

Implement the function below so it fulfills its specification.

Hints (not requirements): Use split and/or join (see reference on page 2). Use a loop, but
do not use a nested loop. Keep track of whether you’re inside or outside an interesting span.

def highlight (input, dl1):

"""Return: the highlighted version of the input.
Pre: input: a sentence chunked by dl. dl: non-empty string without spaces."""

Page 4



Last Name: First Name: Cornell NetID:

4. [12 points] Recursion. We say that an input input is well-formatted with respect to a list
labels if (a) input is a list, and (b) input has length at least two, and (c) input’s first item
is in the list labels, and (d) each of the remaining items in input is either a string or a
well-formatted list. Here are some examples of well-formatted and non-well-formatted inputs:

input labels well-formatted?

['ve', ['V', 'eat']] ['ve', 'v'] True

('np', ['N', 'a', 'or', 'b'l, 'c'l] ['NP', 'V', 'N'] True

[1, [2, 'oui', [1, 'mo']], 'no'] [1,2] True

['ve', ['V', 'eat']] ['VP'] False: 'V' not in labels
[rve', ['v']1] [rve', 'v'] False: list ['V'] too short
'VP' ('ve', 'V'] False: input is not a list

Implement the following function recursively according to its specification.
def wellformatted(input, labels):

"""Returns: True if <input> is well-formatted with respect to <labels>,
False otherwise.

Pre: labels is a (possibly empty) list.

Page 5



Last Name: First Name: Cornell NetID:

5. Subclasses.

Consider the accompanying code, which shows part of a solution to A5 that has a curious way
of handling the flow of states in the game. Many details are omitted, but all the code related
to adding and removing objects from the game is preserved.

(a) [3 points] Complete the class hierarchy below showing the relationships between all the
classes in this code.

Game GObject
Breakout GLabel GRectangle GEllipse

Ball

(b) [3 points] Remember that when an object is created, Python calls the method __init__
on that object automatically. The same name resolution process is followed as with any
method call.

Now, to the question: line 45 executes only once. During the execution of that line, line
79 gets executed. At that point in the execution (i.e. when line 79 is executed),

(i) What is the class of the object referenced by self?

(ii) Where does the variable named self.TEXT reside? We want to know in which specific
class, instance, frame, or module it is found—that is, where it would be drawn when
diagramming the execution.

(iii) At what line was the variable created?

Page 6



Last Name:

()

First Name: Cornell NetID:

[4 points] Remember that the “call stack” is the set of frames that exist at a particular
time. For instance, during a game when the player loses, line 201 executes exactly once,
and at the start of executing that line, the call stack is:

Breakout.update: 51
Ball.update: 201

Here we are including just the first line from each frame, indicating which method is
executing and which line it is at. The frames appear in the order they were created. (Note
that since there are multiple functions with the same name, it’s important to include the
class they are defined in.)

The variable Brick.num_bricks is mentioned in the code only at lines 150, 154, 165, and
166. During a game that is won, it is assigned the value 3 exactly twice. At the first time
it gets that value, what is the call stack? Use a format like the example above, and only
mention functions that are defined in breakout.py.

[12 points] Complete the subclass Countdown of Message that shows the message “Get
ready!” and then, 90 frames after it was created and added to the game, removes itself
from the game and “serves” by adding a new Ball instance to the game. The constants
TEXT and DELAY should determine the message and the time delay before serving the ball.
Be sure your code adheres to the provided class invariant. (To save time on the exam,
there’s no need to write specifications.)

class Countdown(Message) :
"""See spec in code handout, line 106"""

TEXT = 'Get ready!'
DELAY = 90

Page 7



Last Name: First Name: Cornell NetID:

6. [10 points| Invariants. Suppose we are given the task of rearranging a string so that cer-
tain characters are moved to the beginning and the other characters are moved to the end.
Implement this method to the specification given below, following the comments in the code.

def partition_stringl(sl, s2):
"""Return: a string that has the same characters as sl1, only reordered
so that all the characters that appear in s2 are at the beginning, and
all the characters that do not appear in s2 are at the end. The ordering
of the characters within each of the two segments is not important.

Examples:
s1 ; 82 ; some correct results
'abracadabra' ; 'abc' ; 'abacaabardr', 'aaaabbcrdr',
'foobar' ; 'ob' ; 'boofar', 'oboarf',
'foobar' ;0! ; 'foobar', 'oofarb',
'a' ; 'b! ; 'al

# This function works by converting the input to a list and rearranging
the list in place using swaps, following the invariant below. Your
# code must agree with the invariant and postcondition for full credit.

+H+

# convert to a list b

# initialize counters

# inv: b[0..i-1] in s2; b[j+1..len(b)-1] not in s2

while

# post: b[0..j] in s2; b[j+1..len(b)-1] not in s2
# convert b back to a string and return

Did you write your name and netID on each page, and re-read all specs?
Then, have a great summer break!

Page 8



W 00 N OO 1 A W N PP

A A D P D A DDA DD W WWWOW W W W W WNNDNDNDNDNDDNDNDDNMNNRR PR R R R R R R R
00 N O U1 A W N P O OV O N O UV A W DN P O VO WO N O VLA WNPRP O O OWONOVDM WDNRO

# breakout.py

# Steve Marschner (srm2)

# May 15, 2014

"""Breakout game for CS 1110 final."""
import colormodel

import random

import math

from game2d import *

# Window Size
GAME_WIDTH = 512
GAME_HEIGHT = 512

class Breakout(Game):

The main class for an alternative design of the Breakout game.

This program breaks the Model/View/Controller mold, organizing the
whole program around a list of "game objects" that have update and
draw methods that are called once per frame by the update and draw
methods in this Breakout class. All game sequencing is handled by
manipulating the list of active objects: when some condition is
detected that requires changing the state of the game, the update
method that discovered this adds or removes game objects as
appropriate so that the game will continue.

Instance variables:

view [GView]: the view (inherited from Game)
prev_touch [GPoint]: the value of view.touch in the previous frame
lives [int]: number of balls remaining

Class variables:

the_game [Breakout]: the (one and only) instance of Breakout

# Private attributes:

# _game_objs: list containing all the game objects that currently exist
# _next_objs: list of all game objects that will exist in the next frame

the_game = None

def init(self):

Breakout.the_game = self

Initialize the program state.

self.prev_touch = None

self.lives = 3

self. game_objs = []

self. next_objs = [StartMessage()]

def update(self, dt):

Animate a single frame. Called every 1/60 of a second."™""



49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

self. game _objs = self. next _objs[:]
for obj in self._game_objs:
obj.update(dt)
self.prev_touch = self.view.touch
def draw(self):

for obj in self. game objs:
obj.draw(self.view)

def add_game_object(self, new _obj):

self._next_objs.append(new_obj)

def remove_game_object(self, old_obj):

self. next_objs.remove(old_obj)

class Message(GLabel):

def init_ (self):

GLabel. init_ (self, text=self.TEXT, halign=
X=GAME_WIDTH/2, y=GAME_HEIGHT/2)

def update(self, dt):
pass

class StartMessage(Message):

TEXT =

def update(self, dt):

game = Breakout.the_game

, valign=



97

98

99
100
lo1
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

if game.view.touch is not None:
for row in range(Brick.ROWS):
for col in range(Brick.COLS):

game.add_game_object(Brick(row, col))

game.add_game_object(Countdown())
game.add_game_object(Paddle())
game.remove_game_object(self)

class Countdown(Message):

TEXT =
DELAY =

# ...

90

class LoseMessage(Message):

TEXT =

class WinMessage(Message):

TEXT =

class Brick(GRectangle):

SEP_H
SEP_V
HEIGHT
Y_OFFSET
COLS

nmm mn
oo ~ U

00



145 ROWS = 12
146
147 # ... more constants ...
148
149 # The number of bricks that currently exist
150 num_bricks = ©

151
152 def _init_ (self, row, col):

153 # ... call to superclass initializer ...
154 Brick.num_bricks += 1

155
156 def update(self, dt):
157
158
159
160
161 # ... logic to get ahold of the ball ...
162 if ball is not None and ball.collide(self):
163 game = Breakout.the_game

164 game.remove_game_object(self)

165 Brick.num_bricks -= 1

166 if Brick.num_bricks ==

167 game.remove_game_object(ball)

168 game.add_game_object(WinMessage())
169
170
171 class Ball(GEllipse):
172
173
174
175
176
177
178
179
180
181
182
183 DIAMETER = 18
184
185 def __init_ (self):

186 GEllipse.__init__ (self, center_x=GAME_WIDTH/2, center_y=GAME_WIDTH/2,
187 width=Ball.DIAMETER, height=Ball.DIAMETER)

188 # ... instance initialization ...

189
190 def update(self, dt):

191 # ... logic for moving and responding to collisions
192 # if (ball falls off the bottom of the screen):




193 if self.y < -Ball.DIAMETER:

194 # ...

195 game = Breakout.the_game

196 game.remove_game_object(self)

197 game.lives -= 1

198 if game.lives > O:

199 game.add_game_object(Countdown())
200 else:

201 game.add_game_object(LoseMessage())
202
203 def collide(self, other):
204
205
206
207
208
209 # ... logic to detect collisions ...
210
211
212 class Paddle(GRectangle):
213
214
215
216
217 WIDTH 58
218 HEIGHT = 11
219 Y_OFFSET = 30
220
221 def __init__ (self):
222
223 # ... call to superclass initializer ...
224
225 def update(self, dt):
226
227
228 # ... logic for paddle movement ...
229
230
231 # Script Code

232 if __name__ == :

233 Breakout (width=GAME_WIDTH, height=GAME_HEIGHT,fps=60.0).run()
234




