
14. Lists of Strings

Topics:
 List methods-again
 Setting up a list of strings
 Reading from a textfile
 .csv files
 delimiters and the method split

What You Know About Lists of
Numbers Carries Over

Set-Up:
 s = [‘cat’,’dog’,’mice’]

Length:
 L = len(s)

Slicing:
 t = s[1:3]

Methods:
 append, extend, insert, pop,

 count, sort

A Note About sort

Before:

s.sort()

After:

 ‘dog’ s: ‘mouse’ ‘cat’

 ‘cat’ s: ‘dog’ ‘mouse’

When you sort a list of strings and the strings are
made up of letters, digits, and blanks, then it alphabetizes
the items according to the order in this string:

‘ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’

 Strings vs Lists of Characters

LC = ‘abcdefghijklmnopqrstuvwxyz’

UC = ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’

Digits = ‘0123456789’

All = LC + UC + Digits + ’ ‘

s = []

for c in All:

 s.append(c)

s.sort()

lex = ''

for x in s:

 lex = lex + x

print lex

empty list

empty string

repeated appending

repeated concatenation

‘ 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’

Note on sum
If
 s = [‘cat’,’dog’,’mice’]

then
 t = sum(s)

produces an error:

not
 ‘catdogmice’

TypeError: unsupported operand type(s) for +:

 'int' and 'str'

Visualizing Lists of Strings

 0 ---> ‘cat’

 1 ---> ‘dog’

 2 ---> ‘mouse’

s ---->

Informal:

Formal:

 ‘cat’ ‘mouse’ ‘dog’ s:

 0 1 2

Subscript “Reasoning”

 ‘cat’ ‘mouse’ ‘dog’ s:

 0 1 2

The statement

 c = s[2][1:3]

assigns ‘ou’ to c

The statements

 t = s[2]

 c = t[1:3]

assign ‘ou’ to c

Subscript “Reasoning”

 ‘cat’ ‘mouse’ ‘dog’ s:

 0 1 2

How to decipher s[2][1:3]:

 s names a list

 s[2] names item 2 in s

 s[2][1:3] names slice 1:3 in item 2 in s

Three Examples

1. A function that returns a list of random
 3-letter words.

2. A function that reads a text file and returns

a list where each item in the list is a line in
the file.

3. A script that uses a US Census dataset to

examine county population growth rates from
2010 to 2014.

1. A Function that Returns
a List of Strings

def ListOfRandomStrings(n,m):

 """ Returns an alphabetized length-n

 list of random strings each of which

 is made up of m lower case letters.

 The items in the list are distinct.

 PreC: n and m are positive integers

 and n<=26**m. """

Let’s implement this:

There are 26**m different possible strings . So n cannot be bigger than that.

ListOfRandomStrings(100,4)

afei atou atzo auvf bdus bmut bnhk btqp bztw cabs

cdnr chda dayy dhtb dinj drfq ecme eixm ethh evsv

frar gfam gssn gtnx gvmp hfhb hlwe ilsr inxs iolb

itzv izwd jfmc jtph jzai kefo keiy keyo kfft kwnu

kyoi lbgt ldgs ldrc luwn lvtg lynx medj mplc muzs

mvov nawk ngvb nkhp nogc npgc ntjk nwbt oefw oepg

pddo pewe phpp qapi qhal qmod qryd qwhj rmhk rorl

rvhu sauo sebg segl sknu slgk svsf tmry uake vinu

vlvx vygo wtoi wxmj xpcn xuni ypta yqxc yqzq ysny

ywsd yyut zayj zhym zqdn zsqf zvce zwgj zxog zyyp

Sample outcome:

Helper Function RandString

def RandString(m):

 """ Returns a random length-m string

 consisting of lower case letters.

 PreC: m is a positive integer.

 """

Assume the availability of…

If we allowed Repeats…

def ListOfRandomStrings(n,m):

 s = []

 for k in range(n):

 w = RandString(m)

 s.append(t)

 s.sort()

 return s

Repeat n times: Generate a random string and append

Check Before Appending…

def ListOfRandomStrings(n,m):

 s = []

 k = 0 # k is the length of s.

 while k<n:

 w = RandString(m)

 if w not in s:

 s.append(w)

 k+=1

 s.sort()

 return s

Repeat: Generate a random string and append IF it is not yet in s

Notice how we can
use “in” to look
for values in a
list. And “not in”
to confirm the
absence of
a value in a list

2. Reading a Text File Into
a List of Strings

MyFile.txt

abcd

123 abc d fdd

xyz

3.14159 2.12345

Text files can be visualized like this:

This text file
has four lines.

Our Plan

MyFile.txt

abcd

123 abc d fdd

xyz

3.14159 2.12345

We will “read”
the file line-by-line
and make each
line an item in a
list of strings.

 0 ---> ‘abcd’

 1 ---> ‘123 abc d fdd’

 2 ---> ‘xyz’

 3 ---> ‘3.14159 2.12345’

L -->

Opening a File

L = []

with open(‘MyFile.txt’,’r’) as F:

 for s in F:

 L.append(s)

The name of the file is passed as a string.

The file must be in the same working
directory as the file-reading code.

‘r’ means “read”

The Reading

L = []

with open(‘MyFile.txt’,’r’) as F:

 for s in F:

 L.append(s)

F is a “file object”.

It can be read line-by-line with a for-loop.

As the loop executes, s takes on the
value of each file line in succession.

Problem: Special Characters

MyFile.txt

abcd

123 abc d fdd

xyz

3.14159 2.12345

Newline characters and carriage return
characters mess up this process:

Typically these
characters are
irrelevant once
the data is
read into the
list. So delete
them…

Removing Newline and Carriage
Return Characters

L = []

with open(‘MyText.txt’,’r’) as F:

 for s in F:

 s1 = s.rstrip(‘\n’)

 s2 = s1.rstrip(‘\r’)

 L.append(s2)

>>> s = ‘abc ‘

>>> s.rstrip(‘ ‘)

‘abc’

Putting It All Together

def fileToStringList(FileName):

 L = []

 with open(FileName,’r’) as F:

 for s in F:

 s1=s.rstrip(‘\n’)

 s2 = s1.rstrip(‘\r’)

 L.append(s2)

 return L

Using fileToStringList

L=fileToStringvList('EnglishWords.txt')

for s in L:

 if len(s)>=5 and Palindrome(s):

 print s

EnglishWords.txt is a file with about 100000 lines,
each containing a single English word.

Palindrome is a boolean valued function that is
True if and Only if the input string is a palindrome

Using fileToStringList

L=fileToStringList('EnglishWords.txt')

for s in L:

 if len(s)>=5 and Palindrome(s):

 print s

civic deled dewed kaiak kayak level

madam minim radar refer rotor sagas

seres sexes shahs solos stats stets

tenet

Output:

3. A More Complicated Example

EnglishWords.txt

aarvaark

baby

cat

 :

Extracting words from EnglishWords.txt
was easy because there was one data item of
interest per line:

Multiple Data Items Per Line

BigStates.txt

California 38.8

Florida 19.9

NewYork 19.8

Texas 27.0

In more complicated set-ups, there can be
multiple data items per row.

Here, blanks
are being used
to separate
items of interest.

The split Method is Handy
for Extracting Data

>>> s = 'California 38.8'

>>> v = s.split()

>>> v

['California', '38.8']

A list is made up of substrings that are
separated by blanks.

The blank acts as a delimiter.

The Comma-Separated Value
Format

BigStates.csv

California, 38.8

Florida, 19.9

NewYork, 19.8

Texas, 27.0

A more common strategy is to use commas
as delimeters.

The .csv suffix
is used to signal
this format in
a text file.

Reading a .csv File
BigStates.csv

California, 38.8

Florida, 19.9

NewYork, 19.8

Texas, 27.0

L = FileToList(‘BigState.csv’)

for c in L:

 v = c.split(‘,’)

 print v[1],v[0]

38.8 California

19.9 Florida

19.8 NewYork

27.0 Texas

File

 Code

Output

ReadMe Files

Whoever puts together a .csv file is obliged to
tell you how the data is laid out.

BigStates.csv

California, 38.8

Florida, 19.9

NewYork, 19.8

Texas, 27.0

Field 1: State Name
Field 2: Population (millions)

This information
is typically placed
in a text file that
is named ReadMe

An Example
Suppose we have a file CensusData.csv
in which each line houses US Census data on
a county. Assume that…

 Field 6 State Name
 Field 7 County Name

 Field 8 2010 county population

 Field 11 2011 county population

 Field 12 2012 county population

 Field 13 2013 county population

 Field 14 2014 county population

Question: Which county that has a 2010
population greater than 100000 grew the
most between 2010 and 2014?

An Example
 Field 6 State Name
 Field 7 County Name

 Field 8 2010 county population

 Field 11 2011 county population

 Field 12 2012 county population

 Field 13 2013 county population

 Field 14 2014 county population

If c is a line in the file then

 v = c.split(‘,’)

 growth = float(v[13])/float(v[8])

is what we want.

Solution Code
TheCounties =

 fileToStringList('CensusData.csv')

gMax = 0

for c in TheCounties:

 v = c.split(',')

 g = float(v[13])/float(v[7])

 if int(v[7])>=100000 and g>gMax:

 gMax = g

 vMax = v

print vMax[6],vMax[5],int(gMax*100),’percent’

Hays County Texas 117 percent

