1/23/2016

22. More Complicated Classes

Topics:
Example: The class Fraction
Operator Overloading
Class Invariants
Example: The class SimpleDate
Class Variables
deepcopy

A Class For Manipulating

Fractions
ey — 2/3 + 13/6 = (2*6+13*3)/(3*6)
School: = 51/18
= 17/6
>>> x = Fraction(2,3)
bthon >>> y = Fraction(13,6)
cyouzgne':n >>> z = xty

>>> print z
17/6

A Class For Manipulating

Fractions
You in Grade 2/3 * 3/4 = (2*3)/(3*4)
School: = 6/12
=1/2
>>> x = Fraction(2,3)
) >>> y = Fraction(3,4)
PC{)*,T:E;‘Z':" >>> z = x+y
>>> print z
1/2

Let's Definea Class to Do This
Stuff

class Fraction(object):
wun
Attributes:
num: the numerator [int]
den: the denominator [int]

Not good enough. Do not want zero denominators!

Let's Definea Class to Do This
Stuff

class Fraction(object):
Attributes:
num: the numerator [int]
den: the denominator [nonzero int]

Still not good enough. Fractions should be
reduced tolowest terms,e.g., -3/2 not -24/16

A Note About Greatest
Common Divisors
P q gcd(p,q) p/q
16 24 8 2/3
19 47 1 19/47
15 25 5 3/5

Reducing a fraction to lowest terms involves
finding the gcd of the numerator and
denominator and dividing.

1/23/2016

Computingthe Greatest
Common Divisor

def gcd(a,b): Euclid'
uclid's
a = abs(a) Algorithm
b = abs(b)
r = a%b
while r>0: 3008¢
a=>b We will
b - r%b assume this
et fm_ba is given and won't
v worry why it works

Back to the Class Definition

class Fraction(object):

Attributes:
num: the numerator [int]
den: the denominator [nonzero int]
num/den is reduced to lowest terms

These “rules” define a class invariant. Properties
that all Fraction objects obey.

The Constructor

def _ init (self,p,g=1):
d = ged(p,q)
self.num = p/d
self.den = g/d

>>> x = Fraction(10,4) >>> x = Fraction(10)
>>> print x >>> print x
5/2 10/1

Whole numbers are fractions
t00. Handy to use the optional
argument feature.

Let'sLookat the Methods
Defined inthe Class Fraction

Informal synopsis:

in out

negate 2/3 -2/3
Invert 2/3 3/2
__add__ 2/3 + 1/6 5/6
mul 2/3 * 1/6 1/9

The double underscore methods make a nice notation possible.
Instead of £1.add(£2) wecan just write £1+£2.

The negate Method

def negate (self):
""" Returns the negative of self
F = Fraction(-self.num,self.den)
return P

>>> x = Fraction(6,-5)
>>> print x

-6/5

>>> y = x.negate()
>>> print y

6/5

The invert Method

def invert (self):
""" Returns the reciprocal of self
PreC: self is not zero

F = Fraction(self.den,self.num)
return F

>>> x = Fraction(100,95)
>>> print x

20/19

>>> y = x.invert()
>>> print y

19/20

1/23/2016

Consider Addition

s = ‘dogs’ + ‘and’ + ‘cats’

100 + 200 + 300

H]
]

1.2 + 3.4 +5.6

[
[}

What "+" signals depends on the operands.
Python figures it out.
We say that the "+" operation is overloaded.

Let's Define "+" For Fractions

def _ add (self, f):
N = self.num*f.den + self.den*f.num
D = self.den*f.den
return Fraction(N,D)

By defining__add__ this
way we cansay

>>> A = Fraction(2,3)

>>> B = Fraction(1,4) AR
>>C=A+B instead of

>>> print C A.__add__(B)
11/12

Underlying math:
a/b +c/d = (adtbc)/bd

Likewise for Multiplication

def = mul_ (self, f):
N = self.num*f.num
D = self.den*f.den
return Fraction(N,D)

>>> A = Fraction(2,3)

By defining__mul__ this
>>> B = Fraction(1l,4) v Ll

way we can say
A*B

>>> C = A*B .
>>> print C msTe:‘:d of I

) B
176 mul__(B)

Would Like Some Flexibility

Sometimes we would like o add an integer
to a fraction:

2/3+5 =17/3

Tomake this happen Python needs to know the
type of the operands, i.e.,"whois to the right
of the "+" and who is to the left of the "+"?

Using the Built-In Boolean-
Valued Function isinstance

>>> x = 3/2

>>> isinstance (x,Fraction)
False

>>> y = Fraction(3,2)

>>> isinstance (y,Fraction)
True

Feedisinstance it the "mystery” object anda class

and it will tell youif the object isan instance of the class.

A More Flexible add

def _ add__ (self,f):

if isinstance (f,Fraction):
N = self.num*f.den + self.den*f.num
D = self.den*f.den

else:
N self.num + self.den*f
D = self.den

return Fraction(N,D)

IffisaFraction, use (a/b + c¢/d) = (ad+bc)/(bd)

1/23/2016

A More Flexible add

def _ add (self, f):
if isinstance (f,Fraction):
N = self.num*f.den + self.den*f.num
D = self.den*f.den

else:
N = self.num + self.den*f
D = self.den

return Fraction(N,D)

Iffisaninteger,use (a/b + f) = (a+bf)/b

A More Flexible mul

def _ mul (self, f):
if isinstance (f,Fraction):
N = self.num*f.num
D = self.den*f.den

2
|

= self.num*f
D = self.den
return Fraction(N,D)

Iffis aFraction, use (a/b)(c/d) = (ac)/(bd)

A More Flexible mul

def _ mul_(self, f):
if isinstance (f,Fraction):
N = self.num*f.num

D = self.den*f.den

2
|

= self.num*f
self.den
return Fraction(N,D)

o
]

Iffisanint, use (a/b)(f)= (af)/b

Be Carefull

>>> F = Fraction(2,3)
>>> G =F + 1 When you add an int to
. Fraction, the int must

>>> print G be on the right side of
5/3 / the +
>>>H=1+F

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type (s)
for +: 'int' and 'instance'

An Example
Let'scomputel + 1/2 + 1/3+ .+ 1/15

n = 15
s = Fraction(0)
for k in range(l,n+l):
s = s + Fraction(1l,k)

print s “\\

This "+" invokes __add .

1195757/360360

Next,a Class that Supports
Computations with Dates

1/23/2016

If Todayis July 4,1776, The Check isin the Mail
then What is Tomorrow's Date? and will Arrive in 1000 Days
>>> D = SimpleDate('7/4/1776") >>> D = SimpleDate('1/1/2016"')

>>> print D >>> A = D+1000
July 4, 1776 >>> print A
>>> E = D.Tomorrow () September 27, 2018

>>> print E
July 5, 1776

How Many Days from Class Variables

Pear| Harbor t0 9/11? To pull this off, it will be handy to have a

“class variable” that houses information

that figures in date-related computations...
>>> D1 = SimpleDate('9/11/2001')

>>> D2 SimpleDate('12/7/1941"')
>>> NumDays = D1-D2 |nDays =[0,31,28,31,30,31,30,31,31,30,31,30,31] |
>>> print NumDays
21828
The Attributes The Leap Year Problem

Anintegery is aleap year if it is not a century
year and is divisible by 4 or if isa century year
and is divisible by 400.

class SimpleDate (object) :
mwwn
Attributes:
m: index of month [int]
d: the day [int]

def isLeapYear(self):
""" Returns True if and only if

y: the year [int] self encodes a date that part of
m, d, and y identify a a leap year.
valid date. n

won thi sWay ((y%$100>0) and y%4==0)

tha tWay ((y%$100==0) and (y%400==0))
return thisWay or thatWay

1/23/2016

Visualizinga SimpleDate
Object

>>> D = SimpleDate ('7/4/1776")

SimpleDate
m 7
D —m>
d 4
y 1776

The SimpleDate Constructor

def __init (self,s):
""" Returns a reference to a SimpleDate
representation of the date encoded in s.

PreC: s is a date string of the form
'M/D/Y'where M, D and Y encode the month
index, the day, and the year.

v s.split('/")

m int(v[0]) ,d = int(v[1]),y = int(v[2])
self.m = m, self.d =d, self.y =y

If s = '7/4/1776’ then v = [‘7’ ,'‘4’ ,'1776']

The SimpleDate Constructor

Note that
D = SimpleDate(‘7/32/1776")

and
D = SimpleDate(‘'2/29/2015")

produce SimpleDate objects that encode
invalid dates.

The SimpleDate Constructor

def _ init (self,s):
""" Returns a reference to a SimpleDate
representation of the date encoded in s.

PreC: s is a date string of the form

'M/D/Y'where M, D and Y encode the month

index, the day, and the year.

v = s.split('/")

m = int(v[0]) ;d = int(v[1]);y = int(v[2])
I_)self.m =m; self.d =d; self.y =y

I— A good place o guard against “bad” input using assert.

Use Class Variable nDays

nDays =[0,31,28,31,30,31,30,31,31,30,31,30,31]

v = s.split('/")

m = int (v[0]) ;d = int(v[1]);y = int(v[2])
assert 1<=m<=12, 'Invalid Month'

assert 1l<=d<=self.nDays[m], 'Invalid Day'

Needs more work. Does not hande leap year situations.
Nothing wrong with SinpleDate ('2/29/2016’)

Some SimpleDate Methods

Informally...

Tomorrow the next day's date

_eq when are two dates the same?
_add ‘7/4/1776' + 364 is '7/3/177T
sub '3/2/2016'- '2/28/2016' is 3

1/23/2016

Visualizing the Overall Class

class SimpleDate (object) :

def init (self,s): Constructor
def str (self):

def _eq_ (self,other):
def _add (self,other)
def _ sub (self,other):

Methods

def Tomorrow (self) :

def isLeapYear(self):

The Method Tomorrow

SimpleDate
m 7
D—>
d 4
y 1776
>>> D = SimpleDate ('7/4/1776")
>>> T = D.Tomorrow ()
>>> print T .
July 5, 76 SimpleDate
m 7
Pretty printing T > d s
via __str__

y 1776

The Method Tomorrow

Need abunch of if constructions to handle
end-of-month and end-of-year situations
with possible leap year issues:

\7/4/1776' ---> 17/5/1776’
‘2/28/1776’ ---> 12/29/1776’
\2/28/1777" ---> '3/1/1777’
‘7/31/1776’ ---> '8/1/1776’
‘12/31/1776’ ---> ‘1/1/1777'

The __eq_ Method

def _ _eq (self,other):
""" Returns True if and only if other

encodes the same date as self
wan

Bl = self.m = other.m
B2 = self.d == other.d
B3 = self.y = other.y

return Bl and B2 and B3

>>> D1 = SimpleDate('7/4/1776"')
>>> D2 = SimpleDate('4/1/1066")
>>> D1==D2

False

The add Method

def _ _add (self,n):
""" Returns a date that is n days
later than self.
PreC: n is a nonegative integer.
Day = self
for k in range (n):
Day = Day. Tomorrow ()
return Day

>>> D = SimpleDate ('1/1/2016")
>>>E =D + 365

>>> print E

December 31, 2016

The _ sub__ Method

def _ sub (self,other):
""“ D2-D1 returns the number of days from
D1 to D2. D2 must be the later date.
wun
k=0
Day = other
while not (Day=—=self):
k+=1
Day = Day. Tomorrow ()

return k

>>> D1 = SimpleDate('9/11/2001')
>>> D2 = SimpleDate('12/7/1941")
>>> D1-D2

21828

1/23/2016

Referencinga Class Variable

def Tomorrow (self) :
m = self.m
d = self.d
y = self.y
Last = self.nDays[m]
if isLeapYear(y) and m==2:
Last+=1

nDays =[0,31,28,31,30,31,30, 31,31,30,31,30,31]

More on Copying Ob jects

Asubtle issue is involved if you try to copy
objects that have attributes that are
objects themselves.

More on Copying Objects

Toillustrate consider this class

class MyColor:

nnn

Attributes:
rgb: length-3 float list
name: str

def _ init (self,rgb,name):
self.rgb = rgb
self.name = name

More on Copying Ob jects

>>> A = MyColor([1,0,0],’red’)

name ‘red’

rgb [1] of o

A—>

More on Copying Objects

>>> B = copy (3)

name ‘red’

A
rgb (1] of o]
name ‘red),

B—>

rgb

More on Copying Ob jects

>>> B = copy (3)

Now let’s name ‘red’
A—>
make

ayellow rgb

name ‘red)

rgb

1/23/2016

More on Copying Objects

>>> A.rgb[1l]=1
>>> A.name = ‘yellow’

Unintended name ‘yellow
A——>

Effect b

B.Rgb refers
to ayellow

triple name red

B —>
rgb

More on Copying Ob jects

>>> B = deepcopy (A)

deepcopy A name ‘red’

copies
everything rgb [1] of o]

name ‘red’

rgb [1] of o]

B—>

