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17. Recursion  

Recursive Tiling 
Random Mondrian 
Recursive Evaluation of n! 
Tracking a Recursive Function Call 

What is Recursion?  

A function is recursive if it calls itself. 
 
A pattern is recursive if it is defined 
in terms of itself. 

I can tell you what 
this 
is in terms of what 
that 
is. 

The Concept of Recursion 
Is Hard But VERY Important  

Teaching Plan: 
 

 Develop a recursive triangle-tiling procedure 
 informally. 

 

 Fully implement (in Python) a recursive 
 rectangle-tiling procedure.  

 

 Fully implement a recursive function for n! 
 

 Fully implement a recursive function for 
 sorting (in a later lecture). 

 

 

Recursive Graphics  

 
 
 

We will develop a graphics procedure that 
draws this: 

The procedure will call itself. 

We are tiling 

a triangle with 

increasingly 

smaller  

triangles. 

Tiling a Triangle 

We start 
with one 
big triangle: 

And are to 
end up with 
this: 

Tiling a Triangle 
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Requires Repetition 

Given a 
yellow 
triangle 

Define the 
inner triangle 
and the 3  
corner 
triangles 

Color the 
inner triangle 
and repeat the  
process on the 
3 corner triangles 

“Repeat the Process” 

Visit every 
yellow triangle 
and replace it 
with this 

We Get This… “Repeat the Process” 

Visit every 
yellow triangle 
and replace it 
with  

We Get This… “Repeat the Process” 

Visit every 
yellow triangle 
and replace it 
with  
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We Get This… 

Etc. 

The Notion of Level 

A 0-level 
    tiling 

A 1-level 
   tiling 

A 2-level 
  tiling 

A 3-level 
   tiling 

The Connection Between Levels 
A 2-level 
   tiling 

A 3-level 
   tiling 

To display a 3-level tiling you do this: 
   - display the inner triangle T0 
   - display a 2-level tiling of corner triangles T1, T2, and T3 

T0 

T1 

T2 

T3 

The Connection Between Levels 

To display an N-level tiling you do this: 
   - display the inner triangle T0 
   - display an (N-1)-level tiling of triangles T1, T2, and T3 

T0 

T1 

T2 

T3 

A Recursive Procedure 
def Tile(T,level): 

   # PreC: T a triangle 

   if Level ==0: 

     Draw T (yellow) 

   else: 

     # Let T0 be the inner triangle and 

     # T1,T2,and T3 be the corner triangles  

     Draw T0 (magenta) 

     Tile(T1,level-1) 

     Tile(T2,level-1) 

     Tile(T3,level-1) 

       

 

These are the recursive 

procedure calls. 

The procedure Tile calls itself  

three times. 

This is the “base case”.  

A   0-level  tiling just draws the 

input triangle 

A Note on Chopping 
up a Region  

into Triangles… 
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It is Important! 

Step One in simulating flow around an airfoil is to 
generate a triangular mesh and (say) estimate the 
velocity at each little triangle using physics and math. 

An 
Area 
Of 

 Interest 

Another Example: Random 
Mondrians 

Using Python:  

Random Mondrian 

Given This: 

Random Mondrian 

Draw This: 

The Subdivide Process 
Applies to a Rectangle 

L 

W 

 Given a rectangle specified by its length, width, and center,  
either randomly  color it or randomly subdivide it.   

(x,y) 

Subdivision Starts with a 
Random Dart Throw 
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This Defines 4 Smaller 
Rectangles 

 Repeat the process on each of the 4 smaller rectangles…    

This Defines 4 Smaller 
Rectangles 

 We can again repeat the process on each  
of the 16 smaller rectangles. Etc.   

The Notion of Level 

A 1-level Partitioning        A 2-level Partitioning 

def Mondrian(x,y,L,W,level): 

   if level ==0: 

     c = RandomColor()) 

   DrawRect(x,y,L,W,FillColor=c) 

   else: 

  # Subdivide into 4 smaller rectangles 

   Mondrian(upper left rectangle info,level-1) 

   Mondrian(upper right rectangle info,level-1) 

   Mondrian(lower left rectangle info,level-1) 

   Mondrian(lower right rectangle info,level-1) 

 
   

Pseudocode 

We look at a few details. Complete implementation online 

How to Generate  
Random Colors 

We need some new technology to organize the 
selection random colors. 

 

We need lists whose entries are lists. 

Lists with Entries that Are 
Lists 

An Example: 

cyan     = [0.0,1.0,1.0] 

magenta  = [1.0,0.0,1.0] 

yellow   = [1.0,1.0,0.0] 

colorList = [cyan,magenta,yellow] 
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Pick a Color at Random 

cyan     = [0.0,1.0,1.0] 

magenta  = [1.0,0.0,1.0] 

yellow   = [1.0,1.0,0.0] 

colorList = [cyan,magenta,yellow] 

r = randi(0,2) 

randomColor = colorList[r] 

 

 

 

Package the Idea… 

from simpleGraphics import * 

from random import randint as randi 

 

def RandomColor(): 

   “““ Returns a randomly selected 

   rgb list.””” 

   c = [RED,GREEN,BLUE,ORANGE,CYAN] 

   i = randi(0,len(c)-1) 

   return c[i] 

How to Randomly Subdivide 
a Rectangle 

xc = randu(x-L/2,x+L/2) 

yc = randu(y-W/2,y+W/2) 

 

 

 

                                                  

 

 

                                                             

(x,y) 
(xc,yc) 

L 

W 

The Math Behind the 
Little Rectangles 

The upper right rectangle is typical: 
 
 Length:   L1 = (x+L/2)-xc 

 Width:   W1 = (y+W/2)-yc 

 Center:  (xc+L1/2,yc+W1/2) 

 

 

 

                                                  

 

 

                                                             

(x,y) 

(xc,yc) 

L 

W 

The Procedure Mondrian 

A couple of features  
to make the design more  
interesting: 
 
(1) The dart throw that 
determines the subdivision 
can’t land too near the edge. 
No super skinny tiles! 
 
(2) Randomly decide  
whether or not to subdivide. 
This creates a nice diversity  
in size. 

Next Up 
 

A Non-Graphics Example 
of Recursion: 

The Factorial Function 
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Recursive Evaluation of 
Factorial 

Recall the factorial function: 

def F(n): 

   x = 1 

   for k in range(1,n+1): 

      x = x*k 

   return x 

 5! = 1x2x3x4x5  

Recursive Evaluation of 
Factorial 

Q. How would you compute  6!  given that you 
have computed  5! = 120 ? 

 5! = 1x2x3x4x5  

A.  6! = 120 x 6 

Recursive Evaluation of 
Factorial 

 How does this work?  

def F(n): 

   if n<=1: 

      return 1 

   else: 

      a = F(n-1) 

      return n*a 

Executing F(3) 

m = 3 

x = F(m) 

print x 

  We are in the calling script   

 

m –-> 

 

x --> 

  

3 

  

Executing F(3) 

m = 3 

x = F(m) 

print  

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  The function F is called with argument 3. We open up a call frame.   

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

3 

  

  

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  We encounter a function call. F is called with argument equal to 2.   

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

3 
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Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  We open up a call frame.   

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

2 

  

  

 

n –-> 

 

a --> 

 

return  

  

3 

  

  

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  We encounter a function call. F is called with argument 1   

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

2 

  

  

 

n –-> 

 

a --> 

 

return  

  

3 

  

  

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  We open up a call frame.   

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

2 

  

  

 

n –-> 

 

a --> 

 

return  

  

3 

  

  

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

n –-> 

 

a --> 

 

return  

  

1 

  

  

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  The value of 1 is “assigned” to return   

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

2 

  

  

 

n –-> 

 

a --> 

 

return  

  

3 

  

  

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

n –-> 

 

a --> 

 

return  

  

1 

  

1 

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  The value is sent back to the caller.   

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

2 

1 

  

 

n –-> 

 

a --> 

 

return  

  

3 

  

  

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

n –-> 

 

a --> 

 

return  

  

1 

  

1 

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  That function call is over   

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

2 

1 

  

 

n –-> 

 

a --> 

 

return  

  

3 

  

  

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

n –-> 

 

a --> 

 

return  

  

1 

  

1 
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Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  Control now passes to this “edition” of F   

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

2 

1 

  

 

n –-> 

 

a --> 

 

return  

  

3 

  

  

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  Control passes to this “edition” of F. The value  2 is “assigned” to return   

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

2 

1 

2 

 

n –-> 

 

a --> 

 

return  

  

3 

  

  

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  The value is returned to the caller.   

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

2 

1 

2 

 

n –-> 

 

a --> 

 

return  

  

3 

2 

  

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  The function call is over   

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

2 

1 

2 

 

n –-> 

 

a --> 

 

return  

  

3 

2 

  

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  Control now passes to this “edition” of F   

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

3 

2 

  

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  The value 6 is “assigned” to return   

 

m –-> 

 

x --> 

  

3 

  

 

n –-> 

 

a --> 

 

return  

  

3 

2 

6 
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Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  The value is returned to the caller.   

 

m –-> 

 

x --> 

  

3 

6 

 

n –-> 

 

a --> 

 

return  

  

3 

2 

6 

Executing F(3) 

m = 3 

x = F(m) 

print x 

def F(n): 

  if n<=1: 

    return 1 

  else: 

    a = F(n-1) 

    return n*a 

  This function call is over.   

 

m –-> 

 

x --> 

  

3 

6 

 

n –-> 

 

a --> 

 

return  

  

3 

2 

6 

Executing F(3) 

m = 3 

x = F(m) 

print x 

  Control passes to the script that asked for F(3)   

 

m –-> 

 

x --> 

  

3 

6 

Executing F(3) 

m = 3 

x = F(m) 

print x 

  All Done!   

 

m –-> 

 

x --> 

  

3 

6 

 6  Output: 

Overall Conclusions 

Recursion is sometimes the simplest way 
to organize a computation. 
 
It would be next to impossible to do the 
triangle tiling problem any other way. 
 
On the other hand, factorial computation 
is easier via for-loop iteration.  

Overall Conclusions 

Infinite recursion (like infinite loops) can 

happen so careful reasoning is required. 

 

Will we reach the “base case”? 

 

Graphics examples: We will reach Level==0 

Factorial:                We will reach n==1 

 

 


