1/21/2016

1. The Assignment Statement
and Types

Topics:
Python's Interactive Mode
Variables
Expressions
Assignment
Strings, Ints, and Floats

The Python Interactive Shell

Python can be used in a way that reminds
you of a calculator. In the ™" command shell

of your system simply type
python

andyouwill be met with a prompt...

>>>

Let's Compute the Areaof a
Circle Using Python

>>>r = 10

>>> A = 3.14*r*r
>>> print A
314.0

Programming vs Math

>>> r = 10

>>> A = 3.14*r*r
>>> print A
314.0

Notation is different.
InPython, you can't say A = 3.14xrxr

Programming vs Math

>>> r = 10

>>> A = 3.14*r**2
>>> print A

314.0

Notationisdifferent.

InPython you indicate exponentiation with **

Programming vs Math

>>> r = 10

>>> A = 3.14*r**2
>>> print A

314.0

r and A are variables. In algebra, we have
the notion of a variable too. But there are

some big differences.

1/21/2016

Variables
>>> r = 10
>>> A = 3.14*r**2
r -> 10 A -> 314.0

Avariable is anamed memory location. Think of a
variable as a box.

It contains avalue. Think of the value as the
contents of thebox.

The Assignment Statement

>>>r = 10

r -> 10

The "=" symbol indicates assignment.
The assignment statement r = 10 creates the
variable rand assigns to it the value of 10.

" The value of r is 10. The value of Ais 314.0"

Formal: " ris assigned the value of 10' Informal: “r gets 10"

The Assignment Statement

10
3.14%r**2

>>> r
>>> A

r -> 10 A -> 314.0

Avariable can be used in an expression like
3.14*r**2,
The expressionis evaluated and then stored.

Order is Important

>>> A = 3.14*r**2
>>> r = 10
NameError: name ‘r’ is not defined

Assignment Statement: ~ WHERE TOPUTIT = RECIPE FOR A VALUE

Math is less fussy:
A = 3.14*r**2 wherer=10

n

Assignment vs. "Is Equal to

>>> r = 10

>>> 3.14*r**2 = A

SyntaxError: can’t assign to an
operator

InMath "=" isused to say what ison the left
equals what is on the right.

InPython, "=" prescribes an action, “evaluate
the expressionon the right and assign its
value to the variable named on the left.”

The Assignment Statement

>>> r = 10 r > 10
>>> A = 3.14*r**2 | A -> 314.0
>>> S = a/2 s -> | 157.0

Here we are assigning to s the area of a
semicircle that has radius 10.

Assignment Statement: ~ WHERE TOPUTIT = RECIPE FOR A VALUE

1/21/2016

The Assignment Statement Tracking Updates
>>> r = 10 r -> 10

>>> A = 3.14*r**2 A -> 157.0 >>> y = 100 Bef .
>>> A = A/2 efore:

Here weare assigningto A the areaof a
semicirde that has radius 10

No new rulesinthe third assignment. The “recipe”
is A/2. The target of the assignment is A.

"A has been overwrittenby A/2"

Tracking Updates Tracking Updates
>>> y = 100 . >>> y = 100 _
After: 55> £ = 10 Before:
y -> 100 y -> 100
Tracking Updates Tracking Updates
>>> y = 100 . >>> y = 100 _
S After: oo e 5l Before:
y ->| 100 T B 2 e y ->| 100
t -> | 10 t ->| 10

1/21/2016

Tracking Updates

Tracking Updates

= >>> y = 100
ii; { _ 180 After: S>> z - 10 Before:
Zasve |y Zycys |y
t -> | 10 t -> 10
Tracking Updates Tracking Updates
= >>> y = 100
iii { _ 180 After: S>> i - 10 Before:
o ¢ = Gito v -> (110 > ¢ = Lito; v -> 110
t -> | 20 >>>y = ytt t -> 20
Tracking Updates Tracking Updates
= >>> y = 100
iii { _ 180 After: S>> i - 10 Before:
o & = Gio; v -> (130 s 2 i v ->[130
e | e im I | colm

1/21/2016

Tracking Updates

Tracking Updates

ii; { : 180 After: ;;i z : 180 Before:
>>> y = y+t y ->| 130 >>> y = yt+t y -> 130
>>> t = t+10 >>> t = t+10
>>> y = y+t _ >>> y = yt+t _
>>> t = t+10 t > . >>> t = t+10 t > .
>>> y = yt+t
Tracking Updates Assignment vs Equations
Inalgebra,
t=t+10
>>> y = 100) doesn't make sense unless you believe
S>> £ = 10 After: o 1OY
= =t-t =
>>> y y+t y ->| 160
>>> t = t+10 InPython,
>>>y=y+to £ -> | 30 t=1t+ 10
>>> t = t+l
S>> y = y+t means add 10 to the value of + and store
the result int.

The Key 2-Step Action Behind
Every Assignment Statement

<variable name > = < expression >

1. Evaluate the expression on the right hand
side.

2. Store the result in the variable named on the
left hand side.

Naming Variables

>>> radius = 10
>>> Area = 3.l4*radius**2

radius -> 10 Area -> 314.0

Rule 1. Name must be comprised of digits, upper
case letters, lower case letters, and the
underscore character "_"

Rule 2. Must begin with aletter or underscore

A good name for avaridble is short but suggestive of its role: Circle Area

1/21/2016

Precedence

Inanarithmetic expression,whatis
the order of evaluation?

A. Exponentiation & negation comes before
multiplication & division whichin turn
come before addition & subtraction.

This: Is the same as:
A + B*C A + (B*C)
-A**2/4 - (A**2) /4
A*B/C*D ((A*B) /C) *D

Revisit Circle Area

>>> r = 10

>>> A = (22/7) *r**2
>>> print A

300.0

It seems that Python evaluates (22/7) as
3instead of 3.142.. WHY?

It isa good habit o use parentheses if there is the slightest ambiguity.

A different kind of arithmetic. We have a related experience here.
11+3 = 2 in “clock arithmetic”

Integersand Decimals

Inmath we distinguishbetween integer
numbers and decimal numbers.

Integer Numbers:
100,0,-89,1234567

Decimal Numbers:
-2.1,100.01,100.0,12.345

Integersand Decimals

There are differentkinds of division.

Integer Division:
30/8 is3 with a remainder of 6

Decimal Division:
30/8is3.75

int vs float

InPython, a number has a type.

The int type represents humbers as
integers.

The float type represents humbers as
decimals.

int Arithmetic

>>> x = 30
>>>y = 8
>>> q = x/y
>>> print gq
3

>>> r = x%y
>>> print r
6

Important fo understand the differences and the inferactions

To get the remainder, use %. Python “knows" that the values stored in x andy have

type int because there are no decimal points in those assignments.

1/21/2016

float Arithmetic

>>> x = 30.
>>> y = 8.
>>> q = x/y
>>> print q
3.75

Mixing float and int

>>> x 30.
>>>y =8
>>> q = x/y
>>> print g
3.75

Python “knows" that the values storedin x and y have type float because thereare
decimal points in these assignments.

In Pythonif one operand has type float and the other has type int, then the type
int value is converted to float and the evaluation proceeds.

Explicit Type Conversion

>>> x = 30.0

>>> y = 8.0

>>> q = int(x)/int(y)
>>> print g

3

Explicit Type Conversion

>>> x = 30

>>>y =8

>>> q = float (x)/float (y)
>>> print q

3.75

int (_-expression-) converts the value of the expressionfo int value

float (_-expression-) converts the value of the expression foa float

AnImportant Distinction

Integer arithmeticis exact.
Float arithmetic is (usually) not exact.

>>>x =1.0/3.0
>>> print x
.333333333333

Strings

So far we have discussed computation with
numbers.

Now we discuss computation with text.

We use strings to represent text.

You are a “string processor” whenyou redlize 7/4 means July 4 and not 1.75!

1/21/2016

Strings

Strings are quoted characters. Here are three
examples:

>>> sl = ‘abc’
>>> s2 = ‘ABC’
>>s3='ABC"

s1,s2, and s3 are variables with string value.

Strings

Strings are quoted characters. Here are three
examples:

>>> sl = ‘abc’
>>> s2 = ‘ABC’
>>s3=‘'ABC "

The values in s1,s2,and s3 are all different.
Upper and lower case matters. Blanks matter

Strings

Nothing special about letters...

>>> Digits = ‘1234567890’
>>> Punctuation = ‘!':;.?’

>>> Special = @#$%7%&*()_-+="

Basically any keystroke but there are some
exceptions and special rules. More later.

Strings are Indexed

>>> s = ‘The Beatles’

s-->IT|h|e| IBIeIaItIlIeIsI

The charactersin a string can be referenced
through their indices. Called "subscripting”.

Here isone: ‘Sophie”’”s Choice’ i.e., Sophies Choice

Subcripting from zero creates a disconnect: 'T' is nof the first character.

Strings are Indexed

>>> s =‘The Beatles’
>>> t = s[4]
s --> [r|nfe| [Blefa]t]r]e]s]

012 345 67 8 910

t --> [2]
0

String Slicing
>>> s =‘The Beatles’
>>> t = s[4:8]
s->[r|nle| [Blefaltf1]e[s]

012 345 67 8910

¢ --> [a[e]al¢]

01 2 3

The square bracket notation is used. Note, asingle character is a string.

We say that "t isaslice of s".

1/21/2016

String Slicing

s ='The Beatles’
>>> t = s[4:]

String Slicing

s --> ITIhIeI IBIeIaItIlIeIsI

t --> melaltlllelsl

01 2 3 45 6

>>> s =‘The Beatles’
>>> t = s[:4]
s -->IT|h|e| IBIeIaItIlIeIsI

012 345 67 8910

£ -->[z]nfe] |

012 3

Same as s[4:11]. Handy notation when you want an “ending slice.”

Same as s[0:4]. Handy notation when youwant a “beginning slice”.

String Slicing
>>> s =‘'The Beatles'’
>>> t = s[11]

IndexError: string index out of
range

s --> ITIhIeI IBIeIaItIlIeIsI

The is no s[11]. An illegal to access.

String Slicing
>>> s =‘The Beatles’
>>> t = s[8:20]
s --> ITIhIeI IBIeIaItIlIeIsI

012 345 67 8910

e --> [a]e[s]

01 2

Subscripting errors are EXTREMELY common

Itis"OK" to shoot beyondthe endof the source string.

Strings Can Be Combined

‘The'
‘Beatles’
>>> s = sl+s2

s --> ITIhIeIBIeIaItIlIeIsI

This is called concatenation.

Concatenation

‘The'
‘Beatles’
>>> s =sl1l + ' ' + s2

s-->[z|nfe] [slefalefr]e]s]

We “added" in a blank.

Concatenation is the string analog of addition except

No limit to the number of input strings: s = s2+s2+s2+s2+s2

1/21/2016

Types

Strings are a type: str
So at this point we introduced 3 types:

int for integers,e.g., -12
float for decimals,eg., 9.12,-12.0
str for strings, e.qg., ‘abe’ , '12.0’

A Type is a Set of Values and
Operations on Them

Values...

int 123, -123, 0
float 1.0, -.00123, -12.3e-5
str ‘abcde’ , '123.0’

I N

These are called “literals”

Python has other built-in types. And we will learn to make up our own types.

The “e" notation (a power-of-10 notation) is handy for very large or very small

A Type is a Set of Values and
Operations on Them

Operations...
int + - * / unary- ** %
float + - * / unary- **
str ﬁ

concatenation

Type Conversion

>>> s = '123.45'
>>> x = 2*float(s)
>>> print x
246.90

Astring that encodes a decimal value can be
representedasa float.

Type Conversion

>>> s = '-123’
>>> x = 2*int(s)
>>> print x
-246

Astring that encodes an integer value can
be representedasan int.

Type Conversion

>>> x = -123.45
>>> s = str(x)
>>> print s
1-123.45’

Shows how toget a string encoding of a
float value.

10

1/21/2016

Automatic Type Conversion

>>> x
>>> y

1/2.0
2*x

An operation betweena float and an int
resultsina £loat. So x isa float.

Thus, y isalsoa float even though its value
happens to be an integer.

Python is a Dynamically Typed
Language

A variable can hold different types of
values at different times.

>>> x = ‘abcde’
>>> x =1.0
>>> x = 32

In other languages the type of avariable is fixed

Summary

1. Variables house values that can be
accessed.

2. Assignment statements assign values to
variables.

3. Numerical data can be represented
using the int and £loat types.

4. Textdata can be represented using the
str type.

11

