
1/23/2016

1

21. Lists of Objects

Topics:
 Example: The class Disk

 Boolean-Valued Methods
 A Disk Intersection Problem
 Example: The class CountyPop

 Representing census-related data
 Sorting a list of CountyPop objects

A List of Objects

We would like to assemble a list whose
elements are not numbers or strings, but
references to objects.

For example, we have a hundred points in
the plane and a length-100 list of points
called ListOfPoints.

Let’s compute the average distance to (0,0).

Working with a
 List of Point Objects

Origin = Point(0,0)

D = 0

for P in ListOfPoints:

 D += P.Dist(Origin)

N = len(ListOfPoints)

AveDist = D/len(ListOfPoints)

A lot of familiar stuff: Running sums. A for-loop
based on “in”. The len function, Etc

A List of Random Points

def RandomCloud(Lx,Rx,Ly,Ry,n):

 """ Returns a length-n list of points,

 each chosen randomly from the rectangle

 Lx<=x<=Rx, Ly<=y<=Ry.

 PreC: Lx and Rx are floats with Lx<Rx,

 Ly and Ry are floats with Ly<Ry, and

 n is a positive int.

 """

 A = []

 for k in range(n):

 P = RandomPoint(Lx,Rx,Ly,Ry)

 A.append(P)

 return A
The append method for lists
works for lists of objects.

Visualizing a List of Points

>>> P = Point(3,4);Q = Point(1,2);R = Point(9,3)

>>> L = [P,Q,R]

L:

 3 x

 4 y

 Point

 1 x

 2 y

 Point

 9 x

 3 y

 Point

Visualizing a List of Points

>>> P = Point(3,4);Q = Point(1,2);R = Point(9,3)

>>> L = [P,Q,R]

L:

 3 x

 4 y

 Point

 1 x

 2 y

 Point

 9 x

 3 y

 Point

More accurate: A List of references to Point objects

1/23/2016

2

Operations on a List of Points

>>> L[1].x = 100

L:

 3 x

 4 y

 Point

 1 x

 2 y

 Point

 9 x

 3 y

 Point

Before

Operations on a List of Points

>>> L[1].x = 100

L:

 3 x

 4 y

 Point

 100 x

 2 y

 Point

 9 x

 3 y

 Point

After

Operations on a List of Points

>>> L[1] = Point(5,5)

L:

 3 x

 4 y

 Point

 1 x

 2 y

 Point

 9 x

 3 y

 Point

Before

Operations on a List of Points

>>> L[1] = Point(5,5)

L:

 3 x

 4 y

 Point

 5 x

 5 y

 Point

 9 x

 3 y

 Point

After

Printing a List of Points

def printCloud(A):

 """ Prints the points in A

 PreC : A is a list of points.

 """

 for a in A:

 print a

Synonym for the loop:

 for k in range(len(A)):
 print A[k]

We Now Showcase the Use
of Lists of Objects

Example 1. A Disk Intersection Problem

Example 2. A Census Data Problem

1/23/2016

3

A Disk Intersection Problem

A Class for Representing Disks

def class Disk(object):

 """

 Attributes:

 center: Point, the center of the disk

 radius: float, the radius of the disk

 """

 def __init__(self,P,r):

 """ Creates a Disk object with

 center P and radius r

 PreC: P is a Point,r is a pos float

 """

 self.center = P

 self.radius = r

Note that an attribute can be an object. The center attribute is a Point

When Does a Pair of Disks
Intersect?

Answer: When the distance between their centers is less than the
sum of their radii.

The Method Intersects

def Intersects(self,other):

 """ Returns True if self and other

 intersect and False otherwise.

 PreC: self and other are Disk objects

 """

 # The center-to-center distance:

 c1 = self.center

 c2 = other.center

 d = c1.Dist(c2)

 # The sum of the two radii

 radiusSum = self.radius + other.radius

 TheyIntersect = (radiusSum >= d)

 return TheyIntersect

An Intersection Problem

We have a 10-by-10 target

for k in range(100):

 Generate a random disk D

 Display D if it does not
 touch any of the
 previously displayed disks

Assume all the disks have radius 1
and all inside the target.

A Critical Function

def outsideAll(D0,L):

 """ Returns True if D0 doesn't

 intersect any of the disks in L

 PreC: D0 is a Disk and L is a

 list of Disks

 """

 for D in L:

 if D.Intersects(D0):

 return False

 return True

1/23/2016

4

Using outsideAll

The list of displayed disks…

DiskList = []

for k in range(100):

 D = A random disk
 if outsideAll(D,DiskList):

 # D does not intersect any

 # of the displayed disks

 ShowDisk(D,MAGENTA)

 DiskList.append(D)

nDisplayed = len(DiskList)

Display D and append it to
the list of displayed disks

Starts out as the empty list A Census Data Sorting
Problem

What Can We Sort?

We can sort a list of numbers from small to big
 (or big to small).

We can sort a list of strings from “A-to-Z”
 (or “Z-to-A”).

We can sort a list of objects based on an
 attribute if that attribute is either a
 number or a string.

A Sorting Problem

Suppose we have

 class Student(object):
 Attributes:

 Name: string, student’s name

 GPA : float, student’s gpa

and that L is a list of Student objects…

A List of Student Objects

Name:

GPA: 3.31

 ‘Gaga’

Student

Name:

GPA: 4.00

 ‘Cher’

Student

Name:

GPA: 2.95

‘Adele’

Student

 L:

L[0] L[1] L[2]

A List of Student Objects

Name:

GPA: 3.31

 ‘Gaga’

Student

Name:

GPA: 4.00

 ‘Cher’

Student

Name:

GPA: 2.95

‘Adele’

Student

 L:

We can sort this list
based on Name or
GPA.

L[0] L[1] L[2]

1/23/2016

5

A List of Student Objects

Name:

GPA: 2.95

‘Adele’

Student

Name:

GPA: 4.00

 ‘Cher’

Student

Name:

GPA: 3.31

 ‘Gaga’

Student

 L:

Sorted by Name

L[0] L[1] L[2]

A List of Student Objects

Name:

GPA: 4.00

 ‘Cher’

Student

Name:

GPA: 3.31

 ‘Gaga’

Student

Name:

GPA: 2.95

‘Adele’

Student

 L:

Sorted by GPA

L[0] L[1] L[2]

How to Do We Do This?

You have to write a “getter” function that

extracts the value of the “key” attribute.

The name of this getter function is then

passed as an argument to the sort method.

We illustrate the technique on a problem that involves census data.

The Class County

class CountyPop(object):

 Attributes:

 Name: the name of the county (string)

 State: the name of the state (string)

 Pop2010: the 2010 population (int)

 Pop2011: the 2011 population (int)

 Pop2012: the 2012 population (int)

 Pop2013: the 2013 population (int)

 Pop2014: the 2014 population (int)

Setting Up the List of
CountyPop Objects

The file CensusData.csv has these columns:

 5 State Name
 6 County Name
 7 2010 county population
 10 2011 county population
 11 2012 county population
 12 2013 county population
 13 2014 county population

TheCounties = fileToStringList('CensusData.csv')

L = []

for c in TheCounties:

 v = c.split(',')

 c = CountyPop(v[6],v[5],int(v[7]),int(v[10]),

 int(v[11]),int(v[12]),int(v[13]))

 L.append(C)

The constructor sets up the Name, State,
Pop2010, Pop2011, Pop2012, Pop2013, and
Pop2014 attributes

Setting Up the List of
CountyPop Objects

1/23/2016

6

Let’s Sort!

def getPop2014(C):

 # C is a County Object

 return C.Pop2014

 :

if __name__ == '__main__':

 :

 L.sort(key=getPop2014,reverse=True)

 for k in range(10):

 print L[k],L[k].Pop2014

This getter function
grabs the 2014
population.

Printing the top ten
counties in the USA in
terms of population.

And here is how we
tell sort to use it

Top Ten in 2014

 Los Angeles County, California 10116705

 Cook County, Illinois 5246456

 Harris County, Texas 4441370

 Maricopa County, Arizona 4087191

 San Diego County, California 3263431

 Orange County, California 3145515

 Miami-Dade County, Florida 2662874

 Kings County, New York 2621793

 Dallas County, Texas 2518638

 Riverside County, California 2329271

