
1/26/2016

1

25. Two-Dimensional Arrays

Topics

 Motivation
 The numpy Module

 Subscripting

 functions and 2d Arrays

Visualizing

A 2D array has rows and columns.

This one has 3 rows and 4 columns.

We say it is a “3-by-4” array (a.k.a matrix)

12 17 49 61

38 18 82 77

83 53 12 10

Can have a 2d array
of strings or
objects.

But we will just
deal with 2d arrays
of numbers.

Rows and Columns

This is row 1.

12 17 49 61

38 18 82 77

83 53 12 10

Rows and Columns

This is column 2.

12 17 49 61

38 18 82 77

83 53 12 10

Entries

This is the (1,2) entry.

12 17 49 61

38 18 82 77

83 53 12 10

Where Do They Come From?

Entry (i,j) is the distance from city i to city j

1/26/2016

2

Where Do they Come From?

Entry (i,j) is 1 if node i is connected to
node j and is 0 otherwise

Captures the connectivity in
a network

 Nodes
4 and 6
Are
connected

Where Do They Come From

An m-by-n array
of pixels.

Each pixel encodes
3 numbers: a red value,
a green value, a blue
value

So all the information
can be encoded in three
2D arrays

2d Arrays in Python

A = [[12,17,49,61],[38,18,82,77],[83,53,12,10]]

A list of lists.

12 17 49 61

38 18 82 77

83 53 12 10

Accessing Entries

A = [[12,17,49,61],[38,18,82,77],[83,53,12,10]]

A[1][2]

12 17 49 61

38 18 82 77

83 53 12 10

Accessing Entries

A = [[12,17,49,61],[38,18,82,77],[83,53,12,10]]

A[2][1]

12 17 49 61

38 18 82 77

83 53 12 10

Setting Up 2D Arrays

def zeros(m,n):

 v = []

 for k in range(n):

 v.append(0.0)

 A = []

 for k in range(m):

 A.append(v)

 return A

Here is a function that returns a reference to
an m-by-n array of zeros:

1/26/2016

3

Python is Awkward

Turns out that base Python is not very handy
for 2D array manipulations.

The numpy module makes up for this.

We will learn just enough numpy so that
we can do elementary plotting, image
processing and other things.

Introduction to 2D Arrays
in numpy

A few essentials illustrated
by examples.

Setting up a 2D Array of 0’s

>>> from numpy import *

>>> m = 3

>>> n = 4

>>> A = zeros((m,n))

>>> A

array([[0., 0., 0., 0.],

 [0., 0., 0., 0.],

 [0., 0., 0., 0.]])

Note how the row and column dimensions are passed to zeros

Accessing an Entry

>>> A = zeros((3,2))

>>> A[2,1] = 10

>>> A

array([[0., 0.],

 [0., 0.],

 [0., 10.]])

A nicer notation than A[2][1].

Accessing an Entry

>>> A = array([[1,2,3],[4,5,6]])

>>> A

array([[1, 2, 3],

 [4, 5, 6]])

Using the array constructor to build a
3-by-2 array. Note all the square brackets.

Use Copy to Avoid Aliasing

>>> A = array([[1,2],[3,4]])

>>> B = A

>>> A[1,1] = 10

>>> B

array([[1, 2],

 [3, 10]])
2D arrays are
objects

>>> A = array([[1,2],[3,4]])

>>> B = copy(A)

>>> A[1,1] = 10

>>> B

array([[1, 2],

 [3, 4]])

 1 2

 3 4

1/26/2016

4

Iteration and 2D Arrays

Lots of Nested Loops

Nested Loops and 2D Arrays

A = array((3,3))

for i in range(3):

 for j in range(3):

 A[i,j] = (i+1)*(j+1)

 1 2 3

 2 4 6

 3 6 9

A
3x3
times
table

Nested Loops and 2D Arrays

A = array((3,3))

Allocates memory, but doesn’t put any values
in the boxes. Much more efficient than the

Repeated append framework.

Understanding 2D Array Set-Up

for i in range(3):

 for j in range(3):

 A[i,j] = (i+1)*(j+1)

for i in range(3):

 A[i,0] = (i+1)*(0+1)

 A[i,1] = (i+1)*(1+1)

 A[i,2] = (i+1)*(2+1)

Equivalent!

Understanding 2D Array Set-Up

for i in range(3):

 A[i,0] = (i+1)*(0+1)

 A[i,1] = (i+1)*(1+1)

 A[i,2] = (i+1)*(2+1)

 1 2 3

Row 0 is
set up when
i = 0

Understanding 2D Array Set-Up

for i in range(3):

 A[i,0] = (i+1)*(0+1)

 A[i,1] = (i+1)*(1+1)

 A[i,2] = (i+1)*(2+1)

 1 2 3

 2 4 6

Row 1 is
set up when
i = 1

1/26/2016

5

Understanding 2D Array Set-Up

for i in range(3):

 A[i,0] = (i+1)*(0+1)

 A[i,1] = (i+1)*(1+1)

 A[i,2] = (i+1)*(2+1)

 1 2 3

 2 4 6

 4 6 9

Row 2 is
set up when
i = 2

Extended Example

A company has m factories and each of which

makes n products. We’ ll refer to such a company

as an m-by-n company.

Customers submit purchase orders in

which they indicate how many of each

product they wish to purchase. A length-n list

of numbers that expresses this called a PO list.

Cost and Inventory

The cost of making a product varies from

factory to factory.

Inventory varies from factory to factory.

Three Problems

A customer submits a purchase order that is to
be filled by a single factory.

 Q1. How much would it cost each factory

 to fill the PO?

 Q2. Which factories have enough inventory

 to fill the PO?

 Q3. Among the factories that can fill the PO,
which one can do it most cheaply?

Ingredients

To set ourselves up for the solution to these

problems we need to understand:

 -The idea of a Cost Array (2D)

 - The idea of an Inventory Array (2D)

 - The idea of a Purchase Order Array (1D)

We will use numpy arrays throughout.

Cost Array

C --->

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

The value of C[k,j] is what it costs
factory k to make product j.

1/26/2016

6

Cost Array

C --->

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

The value of C[k,j] is what it costs
factory k to make product j.

It costs
$12 for
factory 1
to make
product 3

Inventory Array

38 5 99 34

82 19 83 12 I --->

51 29 21 56

42

42

87

The value of I[k,j] is the inventory in
factory k of product j.

Inventory Array

38 5 99 34

82 19 83 12 I --->

51 29 21 56

42

42

87

The value of I[k,j] is the inventory in
factory k of product j.

Factory 1
can sell up
to 83 units
of product 2.

Purchase Order

The value of PO[j] is the number
product j’s that the customer wants

1 0 12 5 29 PO --->

Purchase Order

The value of PO[j] is the number
product j’s that the customer wants

1 0 12 5 29 PO --->

The customer
wishes to
purchase 29
product 3 units

We Will Develop a Class
called

Company

We will package data and methods in a way
that makes it easy to answer Q1, Q2, and Q3
and to perform related computations.

1/26/2016

7

First, Some Handy Numpy
Features

Computing Row and Column
Dimension

I = array([[10,36,22],[12,35,20]])

Suppose:

A 2-by-3
array.

10 36 22

12 35 20

I -->

Computing Row and Column
Dimension Using shape

(m,n) = I.shape

Suppose:

10 36 22

12 35 20

I -->

 2 3 m: n:

Useful in functions
and methods with 2D
array arguments

(m,n) is a “tuple”

shape is an attribute of the array class

Finding the Location of the
Smallest Value Using argmin

>>> from numpy import *

>>> x = array([20,40,10,70.60])

>>> iMin = x.argmin()

>>> xMin = x[iMin]

>>> print iMin, xMin

2 10

There is also an argmax method

>>> x = array([20,10,30])

>>> y = array([2,1,3])

>>> z = array([10,40,15])

>>> x>y

array([True, True, True], dtype=bool)

>>> all(x>y)

True

>>> x>z

array([True, False, True], dtype=bool)

>>> any(x>z)

True

Comparing Arrays

>>> x = inf

>>> 1/x

0

>>> x+1

Inf

>>> inf > 9999999999999

True

inf

A special float that behaves like infinity

1/26/2016

8

Now Let’s Develop the Class
Company

Start with the attributes and the
constructor.

The Class Company: Attributes

class Company(object):

 """

 Attributes:

 C : m-by-n cost array [float]

 I : m-by-n inventory array [float]

 TV : total value [float]

 """

Total Value: How much is the total inventory worth ?

The Class Company: Constructor

def __init__(self,Inventory,Cost):

 self.I = Inventory

 self.C = Cost

 (m,n) = Inventory.shape

 TV = 0

 for k in range(m):

 for j in range(n):

 TV += Inventory[k,j]*Cost[k,j]

 self.TV = TV

The incoming arguments are the Inventory
and Cost Arrays

Row and Column Dimensions

def __init__(self,Inventory,Cost):

 self.I = Inventory

 self.C = Cost

 (m,n) = Inventory.shape

 TV = 0

 for k in range(m):

 for j in range(n):

 TV += Inventory[k,j]*Cost[k,j]

 self.TV = TV

To compute the row and column dimension of a
numpy 2D array, use the shape attribute.

Computing Total Value
TV = 0

for k in range(m):

 for j in range(n):

 TV += I[k,j]*C[k,j]

30 40 50

60 70 80

C -->

10 36 22

12 35 20

I -->

Inventory Array Cost Array

The nested loop
takes us to each
array entry

Computing Total Value
TV = 0

for k in range(m):

 for j in range(n):

 TV += I[k,j]*C[k,j]

30 40 50

60 70 80

C -->

10 36 22

12 35 20

I -->

Inventory Array Cost Array

1/26/2016

9

Computing Total Value
TV = 0

for k in range(m):

 for j in range(n):

 TV += I[k,j]*C[k,j]

30 40 50

60 70 80

C -->

10 36 22

12 35 20

I -->

Inventory Array Cost Array

Computing Total Value
TV = 0

for k in range(m):

 for j in range(n):

 TV += I[k,j]*C[k,j]

30 40 50

60 70 80

C -->

10 36 22

12 35 20

I -->

Inventory Array Cost Array

Computing Total Value
TV = 0

for k in range(m):

 for j in range(n):

 TV += I[k,j]*C[k,j]

30 40 50

60 70 80

C -->

10 36 22

12 35 20

I -->

Inventory Array Cost Array

Computing Total Value
TV = 0

for k in range(m):

 for j in range(n):

 TV += I[k,j]*C[k,j]

30 40 50

60 70 80

C -->

10 36 22

12 35 20

I -->

Inventory Array Cost Array

Computing Total Value
TV = 0

for k in range(m):

 for j in range(n):

 TV += I[k,j]*C[k,j]

30 40 50

60 70 80

C -->

10 36 22

12 35 20

I -->

Inventory Array Cost Array

Now Let’s Develop Methods
to Answer These 3 Questions

Q1. How much would it cost each factory

to fill a purchase order?

Q2. Which factories have enough inventory

to fill a purchase order?

Q3. Among the factories that can fill the

purchase order, which one can do it most cheaply?

1/26/2016

10

Q1. How Much Does it Cost
Each Factory to Process

a Purchase order? 1 0 12 5 29

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

1*10 + 0*36 + 12*22 + 29* 15 + 5*62

For factory 0:

PO --->

C --->

1 0 12 5 29

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;

for j in range(5):

 s = += C[0,j] * PO[j]

For
factory 0:

j = 0

PO --->

C --->

1 0 12 5 29

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

For
factory 0:

j = 1

s = 0

for j in range(5):

 s = += C[0,j] * PO[j]

PO --->

C --->

1 0 12 5 29

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;

for j=1:5

 s = s + C(1,j) * PO(j)

For
factory 0:

j = 2

s = 0

for j in range(5):

 s = += C[0,j] * PO[j]

PO --->

C --->

1 0 12 5 29

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;

for j=1:5

 s = s + C(1,j) * PO(j)

For
factory 0:

j = 3

s = 0

for j in range(5):

 s = += C[0,j] * PO[j]

PO --->

C --->

1/26/2016

11

1 0 12 5 29

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;

for j=1:5

 s = s + C(1,j) * PO(j)

For
factory 0:

j = 4

s = 0

for j in range(5):

 s = += C[0,j] * PO[j]

PO --->

C --->

1 0 12 5 29

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

s = 0;

for j=1:5

 s = s + C(2,j)*PO(j)

For
factory 1:

s = 0

for j in range(5):

 s = += C[1,j] * PO[j]

PO --->

C --->

1 0 12 5 29

For
factory k:

s = 0

for j in range(5):

 s = += C[k,j] * PO[j]

PO --->

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

C --->

def Order(self,PO):

 “““ Returns an m-by-1 array that

 houses how much it costs

 each factory to fill the PO.

 PreC: self is a Company object

 representing m factories and n

 products. PO is a length-n

 purchase order list.

 ”””

To Answer Q1 We Have

1 0 12 5 29

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

What the Order Method Does

1019

 930

1040

self.C -->

PO -->

 Returns [1019,930,1040]

def Order(self,PO):

 C = self.C

 (m,n) = C.shape

 theCosts = zeros((m,1))

 for k in range(m):

 for j in range(n):

 theCosts[k] += C[k,j]*PO[j]

 return theCosts

Implementation…

1/26/2016

12

>>> A = Company(I,C)

>>> x = A.Order(PO)

>>> kMin = x.argmin()

>>> xMin = x[kMin]

Using Order
Assume that the following are initialized:

 I the Inventory array
 C the Cost array
 PO the purchase order array

 kMin is the index of the factory that can most
cheaply process the PO and xMin is the cost

Q2. Which Factories
Have Enough Inventory to
Process a Purchase Order?

Who Can Fill the Purchase Order
(PO)?

38 5 99 34

82 19 83 12

51 29 21 56

42

42

87

1 0 12 5 29

Yes

No

Yes

Factory 2 can’t because 12 < 29

I -->

PO -->

Who Can Fill the Purchase Order
(PO)?

38 5 99 34

82 19 83 12

51 29 21 56

42

42

87

1 0 12 5 29

Yes

No

Yes

We need to compare the rows of I with PO.

I -->

PO -->

Who Can Fill the Purchase Order
(PO)?

38 5 99 34

82 19 83 12

51 29 21 56

42

42

87

1 0 12 5 29

Yes

No

Yes

 all(I[0,:] >= PO) is True

I -->

PO -->

Who Can Fill the Purchase Order
(PO)?

38 5 99 34

82 19 83 12

51 29 21 56

42

42

87

1 0 12 5 29

Yes

No

Yes

 all(I[1,:] >= PO) is False

I -->

PO -->

1/26/2016

13

Who Can Fill the Purchase Order
(PO)?

38 5 99 34

82 19 83 12

51 29 21 56

42

42

87

1 0 12 5 29

Yes

No

Yes

 all(I[2,:] >= PO) is True

I -->

PO -->

To Answer Q2 We Have…

def CanDo(self,PO):

 """ Return the indices of those

 factories with sufficient

 inventory.

 PreC: PO is a purchase order

 array. """

Who Can Fill the PO?

def CanDo(self,PO):

 I = self.I

 (m,n) = I.shape

 Who = []

 for k in range(m):

 if all(I[k,:] >= PO):

 Who.append(k)

 return array(Who)

Grab the
 inventory array
and compute
its row and col
dimension.,

Who Can Fill the PO?

def CanDo(self,PO):

 I = self.I

 (m,n) = I.shape

 Who = []

 for k in range(m):

 if all(I[k,:] >= PO):

 Who.append(k)

 return array(Who)

Initial ize Who to
the empty list.
Then build it up
thru repeated
appending

Who Can Fill the PO?

def CanDo(self,PO):

 I = self.I

 (m,n) = I.shape

 Who = []

 for k in range(m):

 if all(I[k,:] >= PO): :

 Who.append(k)

 return array(Who)

If every element
of I[k,:] is >= the
corresponding entry
in PO, then factory k
has sufficient inventory

Who Can Fill the PO?

def CanDo(self,PO):

 I = self.I

 (m,n) = I.shape

 Who = []

 for k in range(m):

 if all(I[k,:] >= PO):

 Who.append(k)

 return array(Who)

Who is
not a
numpy array,
but
array(Who) is

1/26/2016

14

>>> A = Company(I,C)

>>> kVals = A.CanDo(PO)

Using CanDo
Assume that the following are initialized:

 I the Inventory array
 C the Cost array
 PO the purchase order array

kVals is an array that contains the indices of
those factories with enough inventory

>>> A = Company(I,C)

>>> kVals = A.CanDo(PO)

Using CanDo
Assume that the following are initialized:

 I the Inventory array
 C the Cost array
 PO the purchase order array

If k in kVals is True, then

 all(A.I[k,:]>= PO)

is True

Q3: Among the
Factories with enough

Inventory, who can fill the
PO Most Cheaply??

For Q3 We Have
def theCheapest(self,PO):

 """ Return the tuple (kMin,costMin)

 where kMin is the index of the factory

 that can fill the PO most cheaply and

 costMin is the associated cost. If no

 such factory exists, return None.

 PreC: PO is a purchase order list. """

 theCosts = Order(PO)

 Who = CanDo(P0)

 if len(Who)==0:

 return None

 else:

Who Can Fill the Purchase Order
Most Cheaply?

38 5 99 34

82 19 83 12

51 29 21 56

42

42

87

1 0 12 5 29

Yes

No

Yes

I -->

PO -->

kMin = 0, costMin = 1019

1019

1040

Implementation

 def theCheapest(self,PO):
 theCosts = Order(PO)

 Who = CanDo(PO)

 if len(Who)==0:

 return None

 else:

 # Find kMin and costMin

1/26/2016

15

Implementation Cont’d

Find kMin and costMin

costMin = inf

for k in Who:

 if theCosts[k]<costMin:

 kMin = k

 costMin = theCosts[k]

return (kMin,costMin)

>>> A = Company(I,C)

>>> (kMin,costMin) = A.Cheapest(PO)

Using Cheapest
Assume that the following are initialized:

 I the Inventory array
 C the Cost array
 PO the purchase order array

The factory with index kMin can deliver
PO most cheaply and the cost is costMin

Updating the Inventory
After Processing a PO

Updating Inventory

38 5 99 34

82 19 83 12

51 29 21 56

42

42

87

1 0 12 5 29

Yes

No

Yes

I -->

PO -->

Before

1019

1040

Updating Inventory

37 5 87 5

82 19 83 12

51 29 21 56

42

37

87

1 0 12 5 29

I -->

PO -->

After

def UpDate(self,k,PO):

 n = len(PO)

 for j in range(n):

 # Reduce the inventory of product j

 self.I[k,j] = self.I[k,j] - PO[j]

 # Decrease the total value

 self.TV = self.TV - self.C[k,j]*P0[j]

Method for Updating
the Inventory Array
After Processing a PO

Maintaining the class invariant, i.e., the connection
between the I, C, and TV attributes.

