
1/22/2016

1

18. Searching a List

Topics:

 Linear Search

 Binary Search

 Measuring Execution Time

 The Divide and Conquer Framework

Search
Examples:

 Is this song in that playlist?

 Is this number in that phone book?

 Is this name in that phone book?

 Is this fingerprint in that archive of
 fingerprints?

 Is this photo in that yearbook?

 More on Using Phone Books

The Manhatten
phone book has
1,000,000+ entries.

How is it possible
to locate a name
by examining just a
tiny , tiny fraction
of those entries?

There must be a great
search algorithm behind
the scenes.

Linear Search

LinSearch: The Spec

def LinSearch(x,a):

 """ Returns an int k with the

 property that a[k]==x is True.

 If no such k exists, then

 k==-1.

 PreC: a is a nonempty list of

 ints and x is an int.

 """

Could also apply the same ideas for searching a list of strings.

Linear Search

86 73 35 43 23 45 42 15 62 25 51 35 a->

0 1 2 3 4 5 6 7 8 9 10 11

def LinSearch(x,a):

 for k in range(len(a)):

 if x == a[k]:

 return k

 return -1

0

23

k->

x->

Walk down the list looking for a match

1/22/2016

2

Linear Search

86 73 35 43 23 45 42 15 62 25 51 35 a->

0 1 2 3 4 5 6 7 8 9 10 11

def LinSearch(x,a):

 for k in range(len(a)):

 if x == a[k]:

 return k

 return -1

0

23

k->

x->

Walk down the list looking for a match

Nope

Linear Search

86 73 35 43 23 45 42 15 62 25 51 35 a->

0 1 2 3 4 5 6 7 8 9 10 11

def LinSearch(x,a):

 for k in range(len(a)):

 if x == a[k]:

 return k

 return -1

1

23

k->

x->

Walk down the list looking for a match

Nope

Linear Search

86 73 35 43 23 45 42 15 62 25 51 35 a->

0 1 2 3 4 5 6 7 8 9 10 11

def LinSearch(x,a):

 for k in range(len(a)):

 if x == a[k]:

 return k

 return -1

2

23

k->

x->

Walk down the list looking for a match

Nope

Linear Search

86 73 35 43 23 45 42 15 62 25 51 35 a->

0 1 2 3 4 5 6 7 8 9 10 11

def LinSearch(x,a):

 for k in range(len(a)):

 if x == a[k]:

 return k

 return -1

3

23

k->

x->

Walk down the list looking for a match

Nope

Linear Search

86 73 35 43 23 45 42 15 62 25 51 35 a->

0 1 2 3 4 5 6 7 8 9 10 11

def LinSearch(x,a):

 for k in range(len(a)):

 if x == a[k]:

 return k

 return -1

4

23

k->

x->

Walk down the list looking for a match

Yup

Linear Search

86 73 35 43 23 45 42 15 62 25 51 35 a->

0 1 2 3 4 5 6 7 8 9 10 11

def LinSearch(x,a):

 for k in range(len(a)):

 if x == a[k]:

 return k

 return -1

4

23

k->

x->

Walk down the list looking for a match

All done

1/22/2016

3

Linear Search: No Match Case

86 73 35 43 23 45 42 15 62 25 51 35 a->

0 1 2 3 4 5 6 7 8 9 10 11

def LinSearch(x,a):

 for k in range(len(a)):

 if x == a[k]:

 return k

 return -1

11

7

k->

x->

Walk down the list looking for a match

Nope

Linear Search: No Match Case

86 73 35 43 23 45 42 15 62 25 51 35 a->

0 1 2 3 4 5 6 7 8 9 10 11

def LinSearch(x,a):

 for k in range(len(a)):

 if x == a[k]:

 return k

 return -1
7 x->

Yup

Return -1 if no match

Linear Search: While
Implementation

def LinSearchW(x,a):

 k=0

 while k<len(a) and a[k]!=x:

 k+=1

 if k==len(a):

 return -1

 else:

 return k

Now we assume that the list
to be searched is sorted

from little to big.

Binary Search

a = [10,20,40,60,90]

a = [‘brown’,’dog’,’fox’,‘lazy’,‘quick’,’the’]

 Back to Using Phone Books

The Ithaca
phone book has
10,000+ entries.

The Manhatten
phone book has
1,000,000+ entries. But it does not
take 100 x longer to look something up. Why?

Key Idea: Repeated Halving

To find Derek Jeter’s number…

B = phone book

while (B is longer than 1 page):

 1. P = middle page of B

 2. Let Q be the first name on P

 3. if ‘Jeter” comes before Q:

 Rip away the 2nd half of B

 else:

 Rip away the 1st half of B.

Scan remaining page P line-by-line for ‘Jeter’

1/22/2016

4

What Happens to Phone Book
Length?

Original: 3000 pages

After 1 rip: 1500 pages

After 2 rips: 750 pages

After 3 rips: 375 pages

After 4 rips: 188 pages

After 5 rips: 94 pages

After 12 rips: 1 page

Binary Search

The idea of repeatedly halving the size of
the “search space” is the main idea behind
the method of binary search.

An item in a sorted array of length n
can be located with approximately log2 n
comparisons.

log2 8 = 3 log2 64 = 7 log2 2**k = k

What is log2(n) ?

 n ceil(log2(n))

 10 4

 100 7

 1000 10

 10000 14

 100000 17

1000000 20

BinSearch: The Spec

def BinSearch(x,a):

 """ Returns an int k with the

 property that a[k]==x is True.

 If no such k exists, then

 k==-1.

 PreC: a is a nonempty list of

 ints that is sorted from smallest

 to largest. x is an int.

 """

Example:
Does this List have an Element

With Value Equal to 70?

12 15 35 33 42 45 51 73 62 75 86 98

0 1 2 3 4 5 6 7 8 9 10 11

Let’s Look For x in a

L:

Mid:

R:

0

5

11

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x ????

x: 70 Mid = (L+R)/2

1/22/2016

5

The Midpoint Computations

 L R (L+R)/2

 0 11 5

 2 6 4

 1 100 50

Let’s Look For x in a

L:

Mid:

R:

0

5

11

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x ????

x: 70

Let’s Look For x in a

L:

Mid:

R:

0

5

11

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x

Yes!
So throw away
The “left half”

x: 70

Let’s Look For x in a

L:

Mid:

R:

0

5

11

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x

Yes!
So throw away
The “left half”

x: 70

Let’s Look For x in a

L:

Mid:

R:

0

5

11

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x

Revise L and Mid

x: 70

Let’s Look For x in a

L:

Mid:

R:

5

8

11

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x ???

x: 70

1/22/2016

6

Let’s Look For x in a

L:

Mid:

R:

5

8

11

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x

No
So throw away the

“right half”

x: 70

Let’s Look For x = 70

L:

Mid:

R:

5

8

11

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x

Revise R and Mid

x: 70

Let’s Look For x = 70

L:

Mid:

R:

5

6

8

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x

Revise R and Mid

x: 70

Let’s Look For x in a

L:

Mid:

R:

5

6

8

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x ????

x: 70

Let’s Look For x in a

L:

Mid:

R:

5

6

8

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x

Yes

Throw away the
Left half

x: 70

Let’s Look For x in a

L:

Mid:

R:

6

7

8

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x

Yes

x: 70

1/22/2016

7

Let’s Look For x in a

L:

Mid:

R:

6

7

8

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

a[Mid] <= x

Throw away the
left half

x: 70

Let’s Look For x in a

Mid:

R:

6

7

8

12 15 35 33 42 45 51 73 62 75 86 98 a->

0 1 2 3 4 5 6 7 8 9 10 11

Done! At this
point we just
compare x
with a[L] and
a[L+1] .

x: 70

L:

L = 0

R = len(a)-1

while R-L > 1:

 # a[L]<=x<=a[R]

 Mid = (L+R)/2

 if x <= a[mid]:

 R = Mid

 else:

 L = Mid

What We Just Did

Note that a[L]<=x<=a[R} remains True throughout the loop

A Loop
Invariant

L = 0

R = len(a)-1

while R-L > 1:

 # a[L]<=x<=a[R]

 Mid = (L+R)/2

 if x <= a[mid]:

 R = Mid

 else:

 L = Mid

What We Just Did

What is the situation when the loop terminates?

L = 0

R = len(a)-1

while R-L > 1:

 # a[L]<=x<=a[R]

 Mid = (L+R)/2

 if x <= a[mid]:

 R = Mid

 else:

 L = Mid

What We Just Did

R-L<=1 implies R = L+1

After the Loop Ends

a[L] a[L+1]

This is True: a[L]<=x<=a[L+1]

1/22/2016

8

After the Loop Ends

a[L] a[L+1]

if x==a[L]:

 return L

elif x==a[L+1]:

 return L+1

else:

 return -1

Measuring Execution Time

We now have two ways to search a list:

 LinSearch(x,a)

 BinSearch(x,a)

Intuition: BinSearch much faster.

Can we quantify this with a “stop watch”?

The timeit Module

This module can be used to time how
long it takes to execute a chunk of code.

Typical chunk = some function of interest.

This is called benchmarking.

Benchmarking

Let’s benchmark LinSearch(x,a) and
BinSearch(x,a).

Compare how long it takes when len(a) equals
1000, 10000, 100000, and 1000000.

Our intuition tells us that as len(a) increases,
BinSearch will be dramatically faster.

BinSearch vs LinSearch

 n tBin tLin tLinW

 1000 0.0007 0.0064 0.0119

 10000 0.0009 0.0668 0.1203

 100000 0.0011 0.8296 1.2082

1000000 0.0015 17.7388 13.9341

tBin = time for BinSearch

tLin = time for LinSearch (for loop version)

tLinW = time for LinSearch (while-loop version)

BinSearch vs LinSearch

 n tLin/tBin

 1000 9

 10000 74

 100000 754

1000000 7095

Reporting ratios is more illuminating since we do not really
care about the time units in this informal comparison

1/22/2016

9

Using the timeit Module

We show how this module was use to
get the results on the previous slides.

Our LinSearch vs BinSearch example is very
typical: is one function faster than another?

A Benchmarking Framework

from timeit import *

Set-up code

Code to Benchmark

S = “““

”””

B = “““

”””

p = 10; m = 100

t = min(Timer(B,setup=S).repeat(p,m))

Yes, these are doc
strings.

The Set-Up and Bench Codes

k=BinSearch(x,s)

from random import randint as randi

from ShowSearch import BinSearch

n = 10000

s = [randi(0,10*n) for i in range(n)]

s.sort()

x = s[n/2]

The set-up code is run once.

It is not timed.

It just sets up the code to
be timed.

A Benchmarking Framework

from timeit import *

Set-up code

Code to Benchmark

S = “““

”””

B = “““

”””

p = 10; m = 100

t = min(Timer(B,setup=S).repeat(p,m))

An “experiment”
consists of running
the blue code
m times.

The stopwatch
will time how long
it takes to do one
experiment

Larger values necessary if the blue code executes very quickly

A Benchmarking Framework

from timeit import *

Set-up code

Code to Benchmark

S = “““

”””

B = “““

”””

p = 10; m = 100

t = min(Timer(B,setup=S).repeat(p,m))

Timer returns
a length-p
list. Each
element is
the stopwatch
time for 1
experiment

This helps control for other stuff that may be running on your computer.

A Benchmarking Framework

from timeit import *

Set-up code

Code to Benchmark

S = “““

”””

B = “““

”””

p = 10; m = 100

t = min(Timer(B,setup=S).repeat(p,m))

In general, it is
best to take
the mininum as
the most reliable.
The benchmark
time is assigned
to t

This helps control for other stuff that may be running on your computer.

1/22/2016

10

Why Benchmarking is
Important

Confirms/refutes what our intuition might
say about efficiency.

Makes us sensitive to the various issues
that affect efficiency.

Steers us away from simplistic comparisons
of different methods that can be used
on the same problem.

