
10. Logical Maneuvers

Topics:
 Boolean Variables
 Boolean Functions
 Exceptions
 Assertions
 Type Checking
 Try-Except

Boolean Variables

Review: Variables and floats

It is possible to assign a float value to a variable:

 a = 1.3

 b = 10.1

 c = 3.7

 r = -b + math.sqrt(b*b-4*a*c))/(2*a)

Review: Variables and ints

It is possible to assign a string value to a
variable:

 m = ‘7’

 d = ’4’

 y = ‘1776’

 date = m + ‘/’ + d + ‘/’ + y

Review: Variables and Booleans

It is possible to assign a boolean value to a
variable:

 L = 1

 R = 2

 x = 1.3

 inside = (L<=x) and (x<=R)

Boolean Variables

As the course progresses you will be dealing
with logical situations that are increasingly
complicated.

Boolean variables are a handy way of keeping
track of what is going on.

Example: Leap Year

Gregorian Calendar Rule:

 Y is a leap year if it is a century year that
 is divisible by 400 or a non-century year
 that is divisible by 4.

Leap years: 1904, 2000, 2016

Not leap years: 1900, 2015

Example: Leap Year
Gregorian Calendar Rule:

 Y is a leap year if it is a century year that
 is divisible by 400 or a non-century year
 that is divisible by 4.

centuryYear = (Y%100==0)

if centuryYear:

 LY = (Y%400==0)

else:

 LY = (Y%4==0)

Y is a positive int.

LY is assigned the
value True if Y
is a leap year and
False otherwise.

Boolean Functions

Boolean Functions

A function can return a boolean value.

This can be a handy way of encapsulating
a complicated computation that culminates
in the production of a True value or a False
value.

Example: Intersecting Squares

Given two unit squares and a point, when is the
point inside both squares?

A unit square
has side length
one.

Point in a Unit Square

Must have:

 a <= x <= a+1

 b <= y <= b+1

(a,b) (a+1,b)

(a,b+1) (a+1,b+1)

(x,y)

xOK = (a<=x<=a+1)

yOK = (b<=y<=b+1)

Point in a Unit Square

def inS(a,b,x,y):

 “”” Returns True if (x,y) is inside

 the square with vertices (a,b),

 (a+1,b),(a,b+1), and (a+1,b+1).

 Otherwise, returns False.”””

 xOK = (a<=x<=a+1)

 yOK = (b<=y<=b+1)

 z = (xOK and yOK)

 return z

Using inS

z2 = inS(a1,b1,x,y) and inS(a2,b2,x,y)

z2 is True if and only if (x,y) is inside

 (i) the unit square with lower left vertex (a1,b1).

and also

 (ii) the unit square with lower left vertex (a2,b2).

Exceptions

Exceptions are errors that occur while your
program is running. The program stops running
when an exception is “raised.”

There are many types of exceptions.

Here are some examples…

ValueError

>>> t = int(‘12F’)

ValueError: invalid literal for

int() with base 10: '123F‘

In English:

 The int function does not accept a
string unless it encodes a number.

ImportError

>>> from superMath import sqrt

ImportError: No module named

superMath

In English:

 You cannot import stuff from a
nonexistent module or a module that is
not in the same working directory

ImportError

>>> >>> from math import SquareRoot

ImportError: cannot import name

SquareRoot

In English:

 the math module does not contain a
function named SquareRoot

NameError

>>> x = 3

>>> x = y+2

NameError: name 'y' is not defined

In English:

 The variable y does not exist.

TypeError

>>> x = 3

>>> s = 'abc'

>>> t = s/x

TypeError: unsupported operand

type(s) for /: 'str' and 'int'

In English:

 You cannot divide a string by a
number.

TypeError

>>> from math import sqrt

>>> x = sqrt('a')

TypeError: a float is required

In English:

 The square root function requires
a number.

ZeroDivisionError

>>> x = 3.0/0.0

ZeroDivisionError: float division by

zero

In English:

 Cannot divide by zero.

Assertions

They enable you to generate exceptions if
something is wrong.

A good way to check that your code is
doing what it should be doing.

A good way to focus on pre- and post- conditions
during the program development phase.

Assertions: How They Work

Syntax:
 assert B,S

B is a boolean expression .

S is a string.

If B is not true, then string S is printed
and an exception is “raised”.

Otherwise, nothing is done.

Checking Pre-, Post- Conditions

Typical:

 1. At the start of a function body, are
 the preconditions satisfied?
 2. At the end of the function body, does
 the value returned have the required
 properties?

Checking Pre-, Post Conditions

def sqrt(x):

 """ Returns an approximate

 square root of x in that

 |L*L-x| <= .001

 PreC: x is a positive number.

 """

Checking Pre-, Post conditions

def sqrt(x):

 assert x>0, 'The sqrt function
 requires a positive argument.'

 L = float(x)

 L = (L+x/L)/2

 L = (L+x/L)/2

 L = (L+x/L)/2

 L = (L+x/L)/2

 assert abs(L*L-x)<=.001,
 'Inaccurate Square Root'

 return L

Type Checking

Use assert and the function isinstance

How isinstance Works

It is a boolean-valued function with two arguments.

isinstance(x,int)

 True if variable x houses an int value
 Otherwise, False
isinstance(x,float)

 True if variable x houses a float value
 Otherwise, False
isinstance(x,str)

 True if variable x houses a string value
 Otherwise, False

Using isinstance

def sqrt(x):

 assert isinstance(x,float) or

 isinstance(x,int),

 print ‘x must be type int or

 float’

 :

Guard against the user passing a string to sqrt:

The Try-except
Construction

A graceful way to handle exceptions

Example:Try-Except
try:

 from AintNoMath import sqrt

 print 'AintNoMath.sqrt unavailable'

except ImportError:

 from math import sqrt

 print ‘AintNoMath.sqrt is not

 available‘

Code that uses sqrt...

a = 9; x = sqrt(a); print a,x

If the green code triggers an ImportError exception, then
the mauve code is executed and “sqrt” comes from the math
module. Otherwise sqrt comes from AintNoMath

Try-Except Construction
try:

except :

 Code that may generate

 a particular exception

 Code to execute if

 the particular

 exception is found

Name of Exception

