
1/22/2016

1

4. Modules and Functions

Topics:

 Modules

 Using import

 Using functions from math

 A first look at defining functions

The Usual Idea of a Function

 sqrt

9 3

A factory that has inputs and builds outputs.

Why are Functions So Important?

One reason is that they hide detail and
enable us to think at a higher level.

Who wants to think about how to
compute square roots in a calculation that
involves other more challenging things?

r = (sqrt(250+110*sqrt(5))/20)*E

The Process of Implementation

To implement a function is to package a

computational idea in a way that others

can use it.

We use the example of square root to

illustrate this.

It Starts with an Insight

The act of computing the square root
of a number x is equivalent to building a
square whose area is x.

If you can build that square and measure
its side, then you have sqrt(x).

Making a Given Rectangle
“More Square”

L

x/L = W

How can we make this rectangle “ more square”
while preserving its area?

1/22/2016

2

Observation

If the square and rectangle have area x, then
we see that the sqrt(x) is in between L and W.

Recipe for an Improved L

L

x/L

L = (L+x/L)/2

x/L

L

Take the
average of the
length and width

Repeat and Package

x L

L = x

L = (L+x/L)/2

L = (L+x/L)/2

L = (L+x/L)/2

L = (L+x/L)/2

L = (L+x/L)/2

In comes x, the “raw material”.
A square root is fabricated and shipped.

Repeat and Package

x L

L = x

L = (L+x/L)/2

L = (L+x/L)/2

L = (L+x/L)/2

L = (L+x/L)/2

L = (L+x/L)/2

How do we make something like in Python?

We talk about “built in” functions first.

Talking About Functions

A function has a name and arguments.

m = max(x,y)

name arguments

We say that max(x,y) is a function call.

Built-in Functions

The list of “built-in” Python functions is quite
short.

Here are some of the ones that require

numerical arguments:

 max, min, abs, round

abs(-6) is 6 max(-3,2) is 2 min(9,-7) is -7

round(6.3) is 6.0 round(3.5) is 4.0 round(-6.3) is -6.0

1/22/2016

3

Calling Functions

>>> a = 5

>>> b = 7

>>> m = max(a**b,b**a)

>>> diff = abs(a**b–b**a)

In a function call, arguments can be expressions.

Thus, the value of the expression a**b–b**a

is passed as an argument to abs.

Functions in Mathematics vs
Functions in Python

So far our examples look like the kind of
functions that we learn about in math.

 “In comes one or more numbers and out
 comes a number.”

However, the concept is more general in
computing as we will see throughout the course.

>>> a = 5

>>> b = 6

>>> c = 7

>>> d = 8

>>> m = max(a**d,d**a,b**c,c**b)

>>> n = max(a*b*c*d,500)

The Number of Arguments is
Sometimes Allowed to Vary

The max function can have an arbitrary number of arguments

The Built-In Function len

A function can have a string argument.

>>> s = ‘abcde’

>>> n = len(s)

>>> print n

5

“In comes a string and out comes its length (as an int)”

Functions and Type

Sometimes a function only accepts arguments of

a certain type. E.g., you cannot pass an int

value to the function len:

>>> x = 10

>>> n = len(x)

TypeError: Object of the type int

 has no len()

Functions and Type

On the other hand, sometimes a function is

designed to be flexible regarding the type

of values it accepts:

>>> x = 10

>>> y = 7.0

>>> z = max(x,y)

Here, max is returning the larger of two values

and it does not care if one has type int and the

other has type float.

1/22/2016

4

Type-Conversion Functions

Three important built-in functions convert types:

int, float, and str.

 >>> a = float(22)/float(7)

>>> a

3.142857142857143

>>> b = int(100*a)

>>> b

314

>>> c = '100*pi = ' + str(b)

>>> c

'100*pi = 314'

Some Obvious Functions are not
in the “Core” Python Library!

>>> x = 9

>>> y = sqrt(x)

NameError: name ‘sqrt’ not defined

How can we address this issue?

Modules

A way around this is to import functions (and

other things you may need) from “modules” that

have been written by experts.

Recall that a module is a file that contains

Python code.

That file can include functions that can be

imported for your use.

Widely-Used Modules

A given Python installation typically comes

equipped with a collection of standard modules

that can be routinely accessed.

Here are some that we will use in CS 1110:

 math numpy urllib2

 string scipy PIL

 random timeit datetime

The CS1110 Plan for Learning
about Functions in Python

1. Practice using the math module. Get solid with
the import mechanism.

2. Practice using the SimpleMath module. Get
solid with how functions are defined.

3. Practice designing and using your own “math-
like” functions.

The Plan Cont’d
4. Practice using the SimpleGraphics module.

Get solid using procedures that produce
graphical output.

5. Practice using methods from the string class.

6. Practice using simple classes as a way to solid
with methods that can be applied to objects.

 (Several weeks away.)

 Procedures and Methods are special types of functions.

1/22/2016

5

The Plan Cont’d

Over the entire semester we keep revisiting the

key ideas to see how they play out in more

complicated situations.

All along the way we develop skills for

 1. Designing Functions

 2. Testing Functions

 Part Art, Part Science, Part Engineering. That’s Software Engineering

By Analogy

Tricycle in the Driveway. And then…

Tricycle on the sidewalk. And then…

2-wheeler w/ trainers. And then…

2-wheeler no turning. And then…

2-wheeler and turning in street. And then…

2-wheeler w/ derailleur. And eventually…

Tour de France!

 Learn by Doing

from math import sqrt

 :

r = (sqrt(250+110*sqrt(5))/20)*E

 :

Let’s Start by Revisiting
 import

MyModule.py

If you want to use the square root function
from the math module, then it must be imported:

Useful functions in math

ceil(x) the smallest integer >= x

floor(x) the largest integer <= x

sqrt(x) the square root of x

exp(x) e**x where e = 2.7182818284…

log(x) the natural logarithm of x

log10(x) the base-10 logarithm of x

sin(x) the sine of x (radians)

cos(x) the cosine of x (radians)

 Legal: from math import sin,cos,exp,log

math.floor, math.ceil,

round, int

Let’s look at what these functions do and
the type of the value that they return.

Note: round and int are part of basic python—
no need to have them imported.

math.floor, math.ceil,

round, int

 x math.floor(x) math.ceil(x) round(x) int(x)

 2.9 2.0 3.0 3.0 2

 2.2 2.0 3.0 2.0 2

 2 2.0 2.0 2.0 2

 2.5 2.0 3.0 3.0 2

-3.9 -4.0 -3.0 -4.0 -3

-3.2 -4.0 -3.0 -3.0 -3

1/22/2016

6

math.floor, math.ceil,

round, int

These functions all return values of type float:

 math.floor(x) largest integer <= x
 math.ceil(x) smallest integer >= x
 round(x) nearest integer to x

This function returns a value of type int:

 int(x) round towards 0

Finding Out What’s in a Module?

If a module is part of your Python installation,

then you can find out what it contains like this:

>>> help(‘random’)

But if the module is “famous” (like all the ones

we will be using), then just Google it.

What’s in a Module?

If you know the name of a particular function

and want more information:

>>> help(‘math.sqrt’)

What’s With the “dot” Notation: math.sqrt?

from math import *

 :

r = (sqrt(250+110*sqrt(5))/20)*E

x = cos(pi*log(r))

 :

Need Stuff from a Module?
Method 1

MyModule.py

This is handy. You now have permission to use everything
in the math module by its name. However, this can open the
door to name conflict if the imported module is big like math.

import math

 :

r = (math.sqrt(250+110*math.sqrt(5))/20)*E

x = math.cos(math.pi*math.log(r))

 :

Need Stuff from a Module?
Method 2.

MyModule.py

You again have permission to use everything in the math
module by its name. But you must use its “full name” and that
involves using the “dot notation.”

from math import sqrt, pi, cos, log

 :

r = (sqrt(250+110*sqrt(5))/20)*E

x = cos(pi*log(r))

 :

Need Stuff from a Module?
Method 3.

MyModule.py

Here you take only what you need from the source module.
You get to use “nice” names without using the dot notation.
The danger of name conflicts minimized because you are
explicitly aware of what is imported.

1/22/2016

7

Appreciating “Full Names”

import M1

import M2

import M3

 :

Your code M1 M2 M3

Unambiguous names in your code even if some
of the module functions have the same name.

Appreciating “Full Names”

from M1 import *

from M2 import *

from M3 import *

 :

Your code M1 M2 M3

Now function calls in your code can be ambiguous.
Easy to lose track of things if M1, M2, and M3
include tons of functions.

Appreciating “Full Names”

from M1 import f1

from M2 import f2

from M3 import f2

 :

Your code M1 M2 M3

Selective importing is ok since you are “on top of”
exactly what is being imported. And you can
use the short name, e.g., f1 instead of M1.f1

The time has come to see how functions are

actually defined.

To do this we introduce a small “classroom”

module that we call SimpleMath.

Building Your Own Functions

Visualizing SimpleMath.py

Recall that
a module is
simply a .py file
that contains
Python code.

This particular
module houses
three functions:
sqrt, sin, and cos

SimpleMath.py

sqrt

sin

cos

How are Functions Defined?

 I can drive a car without knowing what is under the hood.

Let’s look at the three function definitions
in SimpleMath not worrying (for now) about
their inner workings.

This plays nicely with the following fact:
you can use a function without understanding
how it works.

1/22/2016

8

A Square Root Function

The function
header begins
with def.

It indicates the
name of the
function and
its arguments.

Note the colon
and indentation.

def sqrt(x):

 x = float(x)

 L = x

 L = (L + x/L)/2

 L = (L + x/L)/2

 L = (L + x/L)/2

 L = (L + x/L)/2

 L = (L + x/L)/2

 return L

A Square Root Function

This is the body of
the function.

It computes a value
L (hopefully a good
square root.)

The calling program
will be informed of
this value because
of the return
statement.

def sqrt(x):

 x = float(x)

 L = x

 L = (L + x/L)/2

 L = (L + x/L)/2

 L = (L + x/L)/2

 L = (L + x/L)/2

 L = (L + x/L)/2

 return L

The Cosine and Sine Functions

def cos(x):

 x = float(x)

 y = 1.0-(x**2/2)+(x**4/24)-(x**6/720)

 return y

def sin(x):

 x = float(x)

 y = x-(x**3/6)+(x**5/120)-(x**7/5040)

 return y

They too have headers

 DO NOT WORRY ABOUT THE MATH. THIS IS ABOUT THE STRUCTURE
OF PYTHON FUNCTIONS

The Cosine and Sine Functions

def cos(x):

 x = float(x)

 y = 1.0-(x**2/2)+(x**4/24)-(x**6/720)

 return y

def sin(x):

 x = float(x)

 y = x-(x**3/6)+(x**5/120)-(x**7/5040)

 return y

They too have bodies

Fruitful Functions

All three of these functions are fruitful
functions.

Fruitful functions return a value.

Not all functions are like that.

We will discuss the mechanics of how fruitful
functions return values later.

Making Functions Usable

Again, the great thing about functions in
programming is that you can use a function
without understanding how it works.

However, for this to be true the author(s) of
the function must communicate how -to-use
information through docstrings and comments.
There are rules for doing this.

1/22/2016

9

Rule 1. The Module Starts With
Authorship Comments

SimpleMath.py

Lady Gaga (lg123)

January 2, 2016

""" Module to illustrate three simple

math-type functions.

Very crude implementations for the

square root, cosine, and sine

functions."""

Module Name, author(s), last-modified date .

And we follow that format in CS 1110.

Rule 2. The Module
Specification

SimpleMath.py

Lady Gaga (lg123)

January 2, 2016

""" Module to illustrate three simple

math-type functions.

Very crude implementations for the

square root, cosine, and sine

functions."""

 If the module SimpleMath.py is in the home directory, then by typing
help(‘SimpleMath’) the “purple comments” and more will pop up

Rule 3. Each Function Starts
with a Docstring “Specification’’

def sqrt(x):

 """Returns an approximate square

 root of x.

 Performs five steps of rectangle

 averaging.

 Precondition: The value of x is a

 positive number."""

Short summary that states what the function
returns. Also called the post condition.

Rule 3. Each Function Starts
with a Docstring “Specification’’

def sqrt(x):

 """Returns an approximate square

 root of x.

 Performs five steps of rectangle

 averaging.

 Precondition: The value of x is a

 positive number."""

Longer prose giving further useful information
to the person using the function.

Rule 3. Each Function Starts
with a Docstring “Specification’’

def sqrt(x):

 """Returns an approximate square

 root of x.

 Performs five steps of rectangle

 averaging.

 Precondition: The value of x is a

 positive number."""

Conditions that the arguments must satisfy
if the function is to work. Otherwise, no guarantees.

Specifications for cos and sin

def cos(x):

 """Returns an approximation to the

 cosine of x.

 PreC: x is a number that

 represents a radian value."""

def sin(x):

 """Returns an approximation to the

 sine of x.

 PreC: x is a number that

 represents a radian value."""

1/22/2016

10

Now let’s compare these three functions
in the SimpleMath module with their
counterparts in the math module.

Check out Square Root

import math

import SimpleMath

 :

x = input('x = ')

MySqrt = SimpleMath.sqrt(x)

TrueSqrt = math.sqrt(x)

 :

ShowSimpleMath.py

Check out Square Root

x = 25

SimpleMath.sqrt(x) = 5.00002318

 math.sqrt(x) = 5.00000000

Sample Output…

Check out Cosine and Sine

import math

import SimpleMath

 :

theta = input('theta (degrees) = ')

theta = (math.pi*theta)/180

MyCos = SimpleMath.cos(theta)

TrueCos = math.cos(theta)

MySin = SimpleMath.sin(theta)

TrueSin = math.sin(theta)

 :

ShowSimpleMath.py

Check out Cosine and Sine

Sample Output…

theta (degrees) = 60

SimpleMath.cos(theta) = 0.49996457

 math.cos(theta) = 0.50000000

SimpleMath.sin(theta) = 0.86602127

 math.sin(theta) = 0.86602540

Summary of What You Need to
Know

1. How to gain access to functions in other
modules using import.

2. How to define a function using def.

3. How to document modules and functions
through structured doc strings.

