25. Two-Dimensional Arrays

Topics
Motivation
The numpy Module
Subscripting
functions and 2d Arrays

Visualizing

m Can have a 2d array
of strings or
objects.

leleln] o

But we will just
deal with 2d arrays
wlalaln]

A 2D array has rows and columns.

This one has 3 rows and 4 columns.

We say it is a "3-by-4" array (a.k.a matrix)

Rows and Columns

DEnE

DEED

This is row 1.

Rows and Columns

This is column 2.

Entries

DEDE

B
DEED

This is the (1,2) entry.

Where Do They Come From?

Entry (i,j) is the distance from city i to city |

A | B c | o | E | F [¢ | H T 1 [o0 T ¥ [L | W | W | o |
1 Amsterdam Berlin | Bordeaux Brussels Copenhagen| Dublin | Lisbon | London | Madrid = Milan = Munich Paris Rome Zurich
| 2 | Amsterdam 0 B50.554| 1084.367 2047 7B6.456 946404 2254518 476.014 1783.664 1071.746 820185 503852 165755 §18.784
| 3 | Berlin B51.304 0 1634.132| 7B4.757 379.95 1506.451) 2804.254 1036.101 Z333.429 1033586 552566 1053617| 1513.741 544.044
| 4 | Bordeaux 1084.547 1630.51 0 5890.135 1785177 | 1444 857 1174.092 575717 703.237 1018437 1284774 582938 1508.036 1021.859
| 5 | Brussels 20737 7B7.381 891.025 1] 905.03 775.414) 2061177 30B.244 1590.322 B8B81.246 754533 31051 1467.05 B28.274
| & |Copenhagen 7B8.376 381.155 1785.864 905.157 0 1646.681 2856.016 1177.511 2485161 1414722 1080.551 1205348 2011.726 1185.589
| 7| Dublin 93978 149975 1439475 7ES.049 1640.41 0 2609.627 453606 2135.772 1641.326 1554835 863552 222714 13558.364
g | Lishon 2251111 2797.07) 1171.514| 2055.699 2951.741| 2611.451 0 2142.281 B26.064 2150158 2448665 1749502 2535.253 2185.753
| 9 | London 478.973 1038.94 575665 303.242 1179603 455078 2148.82 0 1677.965 1180.519 1024.131 402745 1766.323 927.557
10 | Madrid 1782.485 232544 702855 1588.073 2483115 2144.045| 625192 1673.655 0 1551.588 15975.157 1280.876| 1966.653 1669.123
11 | Milan 1074297 103563 1019.438 905.951 1415052 | 1672432 2152.653 1202.042 1580.336 0 492726 B47.819 584634 279263
|12 | Munich 522285 582946 1282395 783495 1078.805| 1559 472 2450.087 1090.302 1576.382 490953 0 828256 9Z9B85 314.143
|13 | Paris 502799 1048.75 583225 308.357 1203429 BB9BE22 1753.377 400.452 1282522 848469 830414 0 1418.908 B53.608
|14 | Rome 1660.357 1514.24| 1509.825 1492.011 1976.820| 2257 272 2540.524 1785.102 19BB.207 55594 930652| 1431.299 0 B58B5.323
|15 | Zurich 521.854 845704 1021.829) B53.218 1186.023] 1419699 2189.521 949309 1665.309 279652 315164 653299 865456 1]
1
M 4 » w]\Distances / Times / < ¥

-

Where Do they Come From?

Entry (i.j) is 1 if node i is connected to
node j and is O otherwise

(1 100 1 0\
101010
010100
0010 11
1 10100 Nodes
\0 0 0[1]o o/ %°°

connected

Captures the connectivity in
a network

Where Do They Come From

An m-by-n array
of pixels.

Each pixel encodes

3 numbers: a red value,
a green value, a blue
value

So all the information
can be encoded in three
2D arrays

2d Arrays in Python

DEDE

e[
[l

A= [[12,17,49,61],[38,18,82,77],[83,53,12,10]]

A list of lists.

Accessing Entries

DEDE

S| e
o[

A= [[12,17,49,61],[38,18,82,77],[83,53,12,10]]

T

Accessing Entries

DEDE

wle[wln] s
OB

A= [[12,17,49,61],[38,18,82,77],[83,53,12,10]]

T

Setting Up 2D Arrays

Here is a function that returns a reference to
an m-by-n array of zeros:

def zeros(m,n):

v = []

for k in range(n):
v.append (0.0)

A = []

for k in range(m) :
A .append (v)

return A

Python is Awkward

Turns out that base Python is not very handy
for 2D array manipulations.

The numpy module makes up for this.

We will learn just enough numpy so that

we can do elementary plotting, image
processing and other things.

Introduction to 2D Arrays
In numpy

A few essentials illustrated
by examples.

Setting up a 2D Array of O's

>>> from numpy import *

>>> m = 3

>>> n = 4

>>> A = zeros((m,n))

>>> A

array([[0., ©O., O., 0.7,
[0., O., O., O0.],
[0., O., O., O0.11)

Note how the row and column dimensions are passed to zeros

Accessing an Entry

>>> A = zeros((3,2))
>>> A[2,1] = 10

>>> A

array([[©O., 0.7,
[O., 0.1,
[0., 10.11)

A nicer notation than A[2][1].

Accessing an Entry

>>> A = array([[1,2,3]1,[4,5,6]1)
>>> A
array([[1, 2, 3],

[4, 5, 6]])

Using the array constructor to build a
3-by-2 array. Note all the square brackets.

Use Copy to Avoid Aliasing

>>> A = array([[1,2],[3,4]1])
>>> B = A
>>> A[1,1]
>>> B
array([[1, 2],
[3, 10]1])

UV
=N

10

2D arrays are

>>> A = array([[1,2],[3,4]]) RRlEEs

>>> B = copy (A)
>>> A[1,1] = 10
>>> B

array ([[1, 2],

[3, 4]])

Iteration and 2D Arrays

Lots of Nested Loops

Nested Loops and 2D Arrays

A =
for

array ((3,3))
i in range(3):
for j in range(3):

Ali,J] = (i+1)*(J+1)

3x3
times
table

Nested Loops and 2D Arrays

|A = array((3,3)) |

Allocates memory, but doesn't put any values
in the boxes. Much more efficient than the
Repeated append framework.

Understanding 2D Array Set-Up

for i in range(3):
for j in range(3):
Ali,]j] = (i+1)*(j+1)

for i in range(3):
A[i,0] = (1+41)*(0+1)
A[i,1] = (i+1l)*(1+1)
A[i,2] = (i+l1l)*(2+1)

Equivalent!

Understanding 2D Array Set-Up

for i in range(3):
A[i,0] = (1+41)*(0+1)
A[i1,1] = (i41)*(1+1)
Al[i1,2] = (i+41)*(2+1)

Row O is

set up when
i=0

Understanding 2D Array Set-Up

for i in range(3):
A[i,0] = (1+41)*(0+1)
A[i1,1] = (i41)*(1+1)
Al[i1,2] = (i+41)*(2+1)

Row 1 is

set up when
i=1

Understanding 2D Array Set-Up

for i in range(3):
A[i,0] = (1+41)*(0+1)
A[i1,1] = (i41)*(1+1)
Al[i1,2] = (i+41)*(2+1)

Row 2 is

set up when
i=2

Extended Example

A company has m factories and each of which
makes n products. We'll refer to such a company
as an m-by-n company.

Customers submit purchase orders in

which they indicate how many of each

product they wish to purchase. A length-n list
of numbers that expresses this called a PO list.

Cost and Inventory

The cost of making a product varies from
factory to factory.

Inventory varies from factory to factory.

Three Problems

A customer submits a purchase order that is to
be filled by a single factory.

Q1. How much would it cost each factory
to fill the PO?

Q2. Which factories have enough inventory
to fill the PO?

Q3. Among the factories that can fill the PO,
which one can do it most cheaply?

Ingredients

To set ourselves up for the solution to these
problems we need to understand:

-The idea of a Cost Array (2D)
- The idea of an Inventory Array (2D)

- The idea of a Purchase Order Array (1D)

We will use numpy arrays throughout.

Cost Array

DEEEE

EEREG
DEDEE

The value of C[k, j] is what it costs
factory k to make product j.

Cost Array

DEEEE
It costs
$12 for
pERoEl-
to make
product 3

RS

The value of C[k, j] is what it costs
factory k to make product j.

Inventory Array

DEBED

DEEEn
DERED

The value of Tk, j] is the inventory in
factory k of product |.

Inventory Array

m
Factory1
cansell up
of product 2.

EEEED

The value of Tk, j] is the inventory in
factory k of product |.

Purchase Order

S I O3 I I

The value of PO[5] is the number
product j's that the customer wants

Purchase Order

The customer

wishes to
PO —-———>] 1 1212915 purchase 29
product 3 units

The value of PO[5] is the number
product j's that the customer wants

We Will Develop a Class

called
Company

We will package data and methods in a way
that makes it easy to answer Q1, Q2, and Q3
and to perform related computations.

First, Some Handy Numpy
Features

Computing Row and Column
Dimension

Suppose:

A 2-by-3
array.

I = array([[10,36,22],1[12,35,20]1])

Computing Row and Column
Dimension Using shape

Suppose:

Useful in functions

and methods with 2D
10] 36] 22 array arguments
I —=>

(m,n) is a “tuple”

‘(m,n) = I.shape‘ m: 2 n: 3

shape is an attribute of the array class

Finding the Location of the
Smallest Value Using argmin

>>> from numpy import *

>>> x = array([20,40,10,70.60])
>>> iMin = x.argmin ()

>>> xMin = x[1iMin]

>>> print iMin, xMin

2 10

There is also an argmax method

Comparing Arrays

>>> x = array([20,10,30])
>>> y = array([2,1,3])
>>> z = array([10,40,15])

>>> X>Yy

array ([True, True, True], dtype=bool)
>>> all (x>y)

True

>>> X>Z

array ([True, False, True], dtype=bool)
>>> any (x>z)

True

inf

A special float that behaves like infinity

>>> x = inf

>>> 1/x

0

>>> x+1

Inf

>>> inf > 9999999999999
True

Now Let’s Develop the Class
Company

Start with the attributes and the
constructor.

The Class Company: Attributes

class Company (object) :
Attributes:
C : m-by-n cost array [float]
I : m-by-n inventory array [float]
TV : total value [float]

wiiw

Total Value: How much is the total inventory worth ?

The Class Company: Constructor

def init (self,Inventory,Cost):
self.I = Inventory
self.C = Cost
(m,n) = Inventory.shape
TV = 0
for k in range(m) :
for j in range(n):
TV += Inventorylk,j]*Costl[k, J]
self . TV = TV

The incoming arguments are the Inventory
and Cost Arrays

Row and Column Dimensions

def init (self,Inventory,Cost):

self.I = Inventory
self.C = Cost
(m,n) = Inventory.shape
TV = 0
for k in range(m) :

for j in range(n):

TV += Inventorylk,j]*Costl[k, J]

self . TV = TV

To compute the row and column dimension of a
numpy 2D array, use the shape attribute.

Computing Total Value

™V = 0
for k in range) Treresedlon
for j in range(n): array entry

TV += I[k,j]*C[k,]

1 c —-——>

Inventory Array Cost Array

nn

Computing Total Value

TV = 0
for k in range(m):
for j in range(n):
TV += I[k,j]1*C[k,]

.
1 C

IIiIIIIiiIIIIII

Illilliiilliiil

Inventory Array Cost Array

Computing Total Value

TV = 0
for k in range(m):
for j in range(n):
TV += I[k,j]1*C[k,]

II!II IIIII Iiiil Iiiil
1 c —-——>

0 22
12

Inventory Array Cost Array

Computing Total Value

TV = 0
for k in range(m):
for j in range(n):
TV += I[k,j]1*C[k,]

Illilliiilliiil

Inventory Array Cost Array

Computing Total Value

TV = 0
for k in range(m):
for j in range(n):
TV += I[k,j]1*C[k,]

IIHHIIIHHIIE%HI Iiiilliiilliiil
1 c —-——>

Inventory Array Cost Array

Computing Total Value

TV = 0
for k in range(m):
for j in range(n):
TV += I[k,j]1*C[k,]

1 c —-—>

Inventory Array Cost Array

Computing Total Value

TV = 0
for k in range(m):
for j in range(n):
TV += I[k,j]1*C[k,]

IIHHIIIHHIIE%HI Iiiilliiilliiil
1 c —-——>

Inventory Array Cost Array

Now Let's Develop Methods
to Answer These 3 Questions

Q1. How much would it cost each factory
to fill a purchase order?

Q2. Which factories have enough inventory
to fill a purchase order?

Q3. Among the factories that can fill the
purchase order, which one can do it most cheaply?

Q1. How Much Does it Cost
Each Factory to Process
a Purchase order?

EEREE

DEDEE

For factory O:

1*10 + 0*36 + 12*22 + 29*% 15 + 5*62

o]l o) ee] 3=

S
o -l]

s = 0;
for j in range(5):
s = += C[0,]] * PO[]]

For
factory O:

0 BEE
] e

S
o [L]

=0
]EorT 0: ;or J 1in range(5):
O s = 4= c[0,31 * PO[3]

OB BB
EEEREEEE

EEDED

For for j in range(5):
fac‘roryO: s = += C[0,3j] * PO[j]

DEE B
] 3

S
vo [o [

s =0
For for j in range(5):
factory O: s = += C[0,3] * PO[7]

DEBD
EEnEnER

EEDED

For for j in range(5):
fac‘roryO: s = += C[0,3j] * PO[j]

o] oif 22 o] o2

efofefe] s

s =0
For for j in range (5):
factory 1. s = += C[1,3j] * PO[]]

DEBEDE
EEDEEG

S
o o[[[

s =0
for j in range(5):
s = += C[k,J] * PO[]]

For
factory k:

To Answer Q1 We Have

def Order (self,PO):
“WW Returns an m-by-1 array that

houses how much it costs
each factory to fill the PO.

PreC: self i1is a Company object
representing m factories and n

products. PO i1s a length-n
purchase order 1list.

nirnzn

What the Order Method Does

pEEEaE
S EEEEEE
DEREERT

=1 o [1z]esfs

‘Re’rums [1019,930,1040] ‘

Implementation...

def Order (self,PO):
C = self.C
(m,n) = C.shape
theCosts = zeros((m,1))
for k in range(m):
for j in range(n):
theCosts[k] += C[k,j]1*PO[]]
return theCosts

Using Order

Assume that the following are initialized:

I the Inventory array
C the Cost array
PO the purchase order array

>>> A = Company(I,C)
>>> x = A.Order (PO)
>>> kMin = x.argmin ()
>>> xMin = x[kMin]

kMin is the index of the factory that can most
cheaply process the PO and xMin is the cost

Q2. Which Factories
Have Enough Inventory to
Process a Purchase Order?

Who Can Fill the Purchase Order
(PO)?

T =
.
o [[0 [

Factory 2 can't because 12 < 29

Who Can Fill the Purchase Order
(PO)?

Yes

We need to compare the rows of I with PO.

Who Can Fill the Purchase Order
(PO)?

Yes

all(I[0,:] > PO) is True

Who Can Fill the Purchase Order
(PO)?

ST =

No

all(I[1l,:] > PO) is False

Who Can Fill the Purchase Order
(PO)?

T =

Yes

all(I[2,:] > PO) 1is True

To Answer Q2 We Have...

def CanDo (self,PO) :
""" Return the indices of those

factories with sufficient
inventory.

PreC: PO 1s a purchase order
array . mwiivw

Who Can Fill the PO?

def CanDo(self,PO) :

Grab the
I = self.I inventory array
and compute
(m, n) = TI. shape its row and col
dimension.,

Who = []
for k in range (m):
if all(I[k,:] >= PO):
Who . append (k)
return array (Who)

Who Can Fill the PO?

def CanDo(self,PO) :

I = self.1I Initial ize Who to
mn) = I.sh the empty list.
(m,n) shape Thenbuild it up
Who = [] thru repeated

appending

for k in range (m):
if all(I[k,:] >= PO):
Who . append (k)
return array (Who)

Who Can Fill the PO?

def CanDo(self,PO) :

I = self.T
— If every element
(m,n) = I.shape of I[k,]is >=the
- corresponding entry
Who [] in PO, then factory k
for k in range (m) : has sufficient inventory

if all(I[k,:] >= PO):
Who . append (k)
return array (Who)

Who Can Fill the PO?

def CanDo(self,PO) :

I = self.1I
(m,n) = I.shape Who is
Who - [] nhot a
numpy array,
- . but
for k in range (m): array(Who)is

if all(I[k,:] >= PO):
Who . append (k)

return array (Who)

Using CanDo

Assume that the following are initialized:

I the Inventory array
C the Cost array
PO the purchase order array

>>> A = Company(I,C)
>>> kVals = A.CanDo (PO)

kVals is an array that contains the indices of
those factories with enough inventory

Using CanDo

Assume that the following are initialized:

I the Inventory array
C the Cost array
PO the purchase order array

>>> A = Company(I,C)
>>> kVals = A.CanDo (PO)

If kin kVals is True, then
all(A.I[k, :]1>= PO)

IS True

Q3: Among the
Factories with enough

Inventory, who can fill the
PO Most Cheaply??

For Q3 We Have

def theCheapest (self,PO):
""" Return the tuple (kMin,costMin)
where kMin is the index of the factory
that can fill the PO most cheaply and
costMin 1s the associated cost. If no
such factory exists, return None.

PreC: PO is a purchase order list. """

theCosts = Order (PO)

Who = CanbDo (PO)

if len(Who)==0:
return None

else:

Who Can Fill the Purchase Order
Most Cheaply?

] e o
o]
] e o

o [T[]

kMin= 0, costMin = 1019

Implementation

def theCheapest(self,PO):
theCosts Order (PO)
Who = CanDo (PO)
if len (Who)==0:

return None

else:
Find kMin and costMin

Implementation Cont'd

Find kMin and costMin
costMin = inf
for k in Who:
1f theCosts[k]<costMin:
kMin = k
costMin = theCosts[k]
return (kMin,costMin)

Using Cheapest

Assume that the following are initialized:

I the Inventory array
C the Cost array
PO the purchase order array

>>> A = Company(I,C)
>>> (kMin,costMin) = A.Cheapest (PO)

The factory with index kMin can deliver
PO most cheaply and the cost is costMin

Updating the Inventory
After Processing a PO

Updating Inventory

Yes 1019

Updating Inventory

DEEEE
OEDEE

Method for Updating
the Inventory Array
After Processing a PO

def UpDate(self, bk, PO):
n = len (PO)
for j in range(n):
Reduce the inventory of product j
self.I[k,j] = self.I[k,Jj] - PO[]]
Decrease the total wvalue
self . TV = self.TV - self.C[k,j]*P0[]]

Maintaining the class invariant, i.e., the connection
between the I, C, and TV attributes.

