
24. Data Visualization

Topics

 How to define a useful class for
 for manipulating sunrise/sunset
 data.
 How to graphically display facts about
 that data using numpy and pyplot.

The Problem

For various cities around the world, we would
like to examine the “Sun Up” time
throughout the year.

How does it vary from day to day?

What are the monthly averages?

Sun Up Time = Sunset Time – Sunrise Time

Average Sun-Up (Hours):

 City Latitude June September December March

 London 51.50 16.55 12.64 7.93 11.89

 Ithaca 42.43 15.24 12.47 9.13 11.95

 NewYork 40.73 15.04 12.45 9.31 11.96

 Cairo 30.05 14.05 12.34 10.25 11.99

 Miami 25.78 13.72 12.29 10.56 12.02

 Lagos 6.58 12.50 12.15 11.75 12.08

Johannesburg -26.20 10.52 11.94 13.75 12.23

 Sydney -33.88 9.94 11.87 14.36 12.30

How Does Sun-Up
Depend on Latitude and Month?

Visualization!

How Does Sun-Up Time
 Vary Day-to-Day?

How Does Sun-Up Time
 Vary Month-To-Month?

Recall the Motivating Problem

For various cities around the world, we would
like to examine the “Sun Up” time
throughout the year.

How does it vary from day to day?

What are the monthly averages?

Let’s define a class that makes this easy.

Our Plan

1. We define a class Daylight that facilitates
 data acquisition.

2. We introduce numpy arrays and show how to

 use the pylab for plottiing

The Class Daylight

5 Attributes

 Name : name of the city [str]

 Lat: latitude in degrees [float]

 Long: longitude in degrees [float]

 RiseTime: rise time in hours

 [length-365 numpy array]

 SetTime: set time in hours

 [length-365 numpy array]

What the Constructor Does

It will have one argument: the name of a city
as a string.

It will then read the .dat file associated with

that city and proceed to set up the 5
attributes.

A Folder Called RiseSetData Has
.dat Files for Each these Cities

Anaheim Anchorage Arlington Athens Atlanta

Baltimore Bangkok Beijing Berlin Bogata

Boston BuenosAires Cairo Chicago Cincinnati

Cleveland Denver Detroit Honolulu Houston

Ithaca Johannesburg KansasCity Lagos London

LosAngeles MexicoCity Miami Milwaukee Minneapolis

Moscow NewDelhi NewYork Oakland Paris

Philadelphia Phoenix Pittsburgh RiodeJaneiro Rome

SanFrancisco Seattle Seoul Sydney Tampa

Teheran Tokyo Toronto Washington Wellington

For us, .dat files are the same as .txt files

Downloaded from: http://www.usno.navy.mil/

What do the lines in
Ithaca.dat

look like?

There Are 33 Lines

 Ithaca

 W07629N4226

 1 R S R S R S R S R S R S R S R S R S R S R S R S

 2 R S R S R S R S R S R S R S R S R S R S R S R S

 3 R S R S R S R S R S R S R S R S R S R S R S R S

 28 R S R S R S R S R S R S R S R S R S R S R S R S

 29 R S R S R S R S R S R S R S R S R S R S R S

 30 R S R S R S R S R S R S R S R S R S R S R S

 31 R S R S R S R S R S R S R S

The Data for a Particular City
is Housed in a 33-line .dat file

 Ithaca

 W07629N4226

 1 R S R S R S R S R S R S R S R S R S R S R S R S

 2 R S R S R S R S R S R S R S R S R S R S R S R S

 3 R S R S R S R S R S R S R S R S R S R S R S R S

 28 R S R S R S R S R S R S R S R S R S R S R S R S

 29 R S R S R S R S R S R S R S R S R S R S R S

 30 R S R S R S R S R S R S R S R S R S R S R S

 31 R S R S R S R S R S R S R S

Line 2 encodes its longitude and latitude

Helper Function: LongLat

def LongLat(s):

 Long = float(s[1:4])+float(s[4:6])/60

 if s[0]=='E':

 Long = -Long

 Lat = float(s[7:9])+float(s[9:11])/60

 if s[6]=='S':

 Lat = -Lat

 return (Lat,Long)

A latlong string has length 11
 W08140N4129

The Data for a Particular City
is Housed in a 33-line .dat file

 Ithaca

 W07629N4226

 1 R S R S R S R S R S R S R S R S R S R S R S R S

 2 R S R S R S R S R S R S R S R S R S R S R S R S

 3 R S R S R S R S R S R S R S R S R S R S R S R S

 28 R S R S R S R S R S R S R S R S R S R S R S R S

 29 R S R S R S R S R S R S R S R S R S R S R S

 30 R S R S R S R S R S R S R S R S R S R S R S

 31 R S R S R S R S R S R S R S

The remaining lines house the rise-set data.
Each R and S is a length-4 string: ‘0736’

Helper Function: ConvertTime

def ConvertTime(s):

 x = float(s[:2])+float(s[2:])/60

 return x

In comes a length-4 string and back comes
a float that encodes the time in hours

‘0736’ ----> 7 + 36/60 hours ----> 7.6

The Data for a Particular City
is Housed in a 33-line .dat file

 Ithaca

 W07629N4226

 1 R S R S R S R S R S R S R S R S R S R S R S R S

 2 R S R S R S R S R S R S R S R S R S R S R S R S

 3 R S R S R S R S R S R S R S R S R S R S R S R S

 28 R S R S R S R S R S R S R S R S R S R S R S R S

 29 R S R S R S R S R S R S R S R S R S R S R S

 30 R S R S R S R S R S R S R S R S R S R S R S

 31 R S R S R S R S R S R S R S

Day-Number followed by 12 rise-set pairs, one
pair for each month

Rise/Set data for April 3

The Class Daylight

Attributes:

 City: name of the city [str]

 Lat: latitude in degrees [float]

 Long: longitude in degrees [float]

RiseTime: length-365 numpy array of

 sunrise times

 SetTime: length-365 numpy array of

 sunset times

 The Constructor
Sample Call

 C = Daylight(‘Ithaca’)

Reads the file Ithaca.dat into a list of
33 strings. Each string is deciphered.

Creates the Daylight object that house’s
Ithaca’s name, latitude, longitude, the 365
sunrise times and the 365 sunset times.

We Need Some New Tools
To Graphically Display the Data

from numpy import *

from pylab import *

We use numpy for arrays
and

pylab for plotting.

A Simple Plot

A = Daylight(‘Ithaca’)

D = A.SunUp()

plot(D)

show()

How does this work?

A Simple Plot

A = Daylight(‘Ithaca’)

D = A.SunUp()

plot(D)

show()

 def SunUp(self):

 """returns a length-365 numpy

 array of sun-up times. """

 return self.SetTime - self.RiseTime

You can subtract one numpy array from another.

How about a title and a labeling of the y-axis?

A Simple Plot

A = Daylight(‘Ithaca’)

D = A.SunUp()

plot(D)

titlestr = '%s Lat = %6.2f Long = %6.2f' % (A.City,A.Lat,A.Long)

title(titlestr,fontsize=16)

ylabel('Hours of Sunlight',fontsize=16)

show()

Modify the x range and the y range

A Simple Plot

A = Daylight(‘Ithaca’)

D = A.SunUp()

plot(D)

titlestr = '%s Lat = %6.2f Long = %6.2f' % (A.City,A.Lat,A.Long)

title(titlestr,fontsize=16)

ylabel('Hours of Sunlight',fontsize=16)

xlim(0,364)

ylim(5,20)

show()

Label the x-axis with month names

Add a Grid

Monthly Averages

 def MonthAves(self):

 x = zeros((12,1))

 D = self.SunUp()

 start = [0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334]

 finish = [30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333,364]

 for k in range(12):

 z = D[start[k]:finish[k]]

 x[k] = sum(z)/len(z)

 return x

A Bar Plot

A = Daylight(‘Ithaca’)

M = A.MonthAves()

bar(range(12),M,facecolor='magenta')

xlim(-.2,12)

ylabel('Average Hours of Sunlight')

title(A.City,fontsize=16)

show()

More on Numpy Arrays

1-dimensional Array Basics

>>> from numpy import *

>>> x = array([1,2,3])

>>> x

array([1, 2, 3])

>>> x[2]

3

X is a 1d array. (2d arrays soon!)

It has 3 entries

The entries are floats.

1-dimensional Array Basics

>>> y = array([1,2,3],dtype='int')

>>> z = y[2]/y[1]

>>> z

1

This is how you create an array of ints.

1-dimensional Array Basics
>>> a = array([10,20,30])

>>> b = array([5,4,15])

>>> a+b

array([15, 24, 45])

>>> a-b

array([5, 16, 15])

>>> a/b

array([2, 5, 2])

>>> a*b

array([50, 80, 450])

You can add, subtract, divide, and multiply arrays.

1-dimensional Array Basics

>>> f = array([10,20])

>>> g = array([1,2,3])

>>> f+g

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: operands could not be

broadcast together with shapes (2,) (3,)

But they better be the same size!.

1-dimensional Array Basics
>>> u = [1,2,3]

>>> type(u)

<type 'list'>

>>> v = array([10,20,30])

>>> type(v)

<type 'numpy.ndarray'>

>>> z = u+v

>>> z

array([11, 22, 33])

>>> type(z)

<type 'numpy.ndarray'>

You can
mix “regular”
lists of
numbers
with
numpy
arrays

1-dimensional Array Basics

>>> x = array([-10.3,12.6,-89.7])

>>> y = abs(x)

>>> y

array([10.3, 12.6, 89.7])

You can apply a function to an array
if it is ok to apply the function to
each entry in the array.

The numpy linspace function

x = linspace(1,3,5)

1.0 1.5 2.0 2.5 3.0 x :

linspace(a,b,n) is a length –n
list of values that are equally spaced
from x = a to x = b.

Plotting a With Pylab

Assume:

 from numpy import *

 from pylab import *

Displaying an Array

Assume:

 from numpy import *

 from pylab import *

U = Daylight(‘Ithaca’)

D = U.SunUP()

plot(D)

Displaying an Array

Table Plot

 x sin(x)

0.00 0.0

1.57 1.0

3.14 0.0

4.71 -1.0

6.28 0.0

Plot based on 5 points

Table Plot

 x sin(x)

0.000 0.000

0.784 0.707

1.571 1.000

2.357 0.707

3.142 0.000

3.927 -0.707

4.712 -1.000

5.498 -0.707

6.283 0.000

Plot based on 9 points

Table Plot

Plot based on 200 points—looks smooth

Generating Tables and Plots

 x sin(x)

0.000 0.000

0.784 0.707

1.571 1.000

2.357 0.707

3.142 0.000

3.927 -0.707

4.712 -1.000

5.498 -0.707

6.283 0.000

x = linspace(0,2*pi,9)

y = sin(x)

plot(x,y)

show()

plot(x,y)

x,y 1-dim arrays of numbers
That have the same length

plot(x,y) “connects the dots”:

(x[0],y[0]) ,..., (x[n-1],y[n-1])

Drawing Lines

for k in range(6,20):

 # Draw horizontal line from (0,k) to (365,k)

 plot(array([0,365]),array([k,k]),

 color='red',linestyle=':')

Drawing Lines

for k in range(6,20):

 # Draw horizontal line from (0,k) to (365,k)

 plot(array([0,365]),array([k,k]),

 color='red',linestyle=':')

Connect
 two dots

A Note on subplot

subplot(2,1,1)

 <code>

subplot(2,1,2)

 <code>

Show()

 1

 2

When you want
more than one
plot in the window.

A Note on subplot

subplot(2,2,1)

 <code>

subplot(2,2,2)

 <code>

subplot(2,2,3)

 <code>

subplot(2,2,4)

 <code>

Show()

 1 2

 3 4

 2

