
1/22/2016

1

13A. Lists of Numbers

Topics:

 Lists of numbers
 List Methods:
 Void vs Fruitful Methods

 Setting up Lists
 A Function that returns a list

We Have Seen Lists Before

MyColor = [.3,.4,.5]

DrawDisk(0,0,1,FillColor = MyColor)

Recall that the rgb encoding of a color
involves a triplet of numbers:

MyColor is a list.

A list of numbers is a way of assembling a
sequence of numbers.

Terminology

x = [3.0, 5.0, -1.0, 0.0, 3.14]

How we talk about what is in a list:

 5.0 is an item in the list x.

 5.0 is an entry in the list x.

 5.0 is an element in the list x.

 5.0 is a value in the list x.

Get used to the synonyms.

A List Has a Length

The following would assign the value of 5
to the variable n:

x = [3.0, 5.0, -1.0, 0.0, 3.14]

n = len(x)

The Entries in a List are
 Accessed Using Subscripts

The following would assign the value of -1.0
to the variable a:

x = [3.0, 5.0, -1.0, 0.0, 3.14]

a = x[2]

A List Can Be Sliced

This: x = [10,40,50,30,20]

y = x[1:3]

z = x[:3]

w = x[3:]

Is same as: x = [10,40,50,30,20]

y = [40,50]

z = [10,40,50]

w = [30,20]

1/22/2016

2

Lists are Similar to Strings

‘x’ ‘1’ ‘?’ ‘L’ ‘C’ ‘a’ s:

 3 2 7 5 4 0 x:

A string is a sequence of characters.

A list of numbers is a sequence of numbers.

Lists in Python

Animals = [‘cat’,’dog’,’mouse’]

Now we consider lists of numbers:

Soon we will consider lists of strings:

Later we will consider lists of objects.

The operations on lists that we are about to describe will be illustrated using lists
of numbers. But they can be applied to any kind of list.

A = [10,20,30]

B = [10.0,20.0,30.0]

C = [10,20.0,30]

The items
in a list
usually have
the same type,
but that is not
required.

Visualizing Lists

 0 ---> 3

 1 ---> 5

 2 ---> 1

 3 ---> 7

x ---->

 3 1 7 5 x:

 0 1 2 3

Informal:

Formal:

A state diagram that shows
the “map” from indices to
elements.

Lists vs. Strings

There are some similarities, e.g., subscripts

But there is a huge difference:

 1. Strings are immutable. They cannot be changed.

 2. Lists are mutable. They can be change.

Exactly what does this mean?

Strings are Immutable

Before:

s[2]= ‘x’

After:

‘a’ ‘c’ ‘d’ ‘b’ s:

 0 1 2 3

You cannot change the value of a string

TypeError: 'str' object does

not support item assignment

Lists ARE Mutable

Before:

x[2] = 100

After:

You can change the values in a list

 3 1 7 5 x:

 0 1 2 3

 3 100 7 5 x:

 0 1 2 3

1/22/2016

3

Lists ARE Mutable

Before

x[1:3] = [100,200]

After

You can change the values in a list

 3 1 7 5 x:

 0 1 2 3

 3 200 7 100 x:

 0 1 2 3

List Methods

When these methods are applied to a list,

they affect the list.

 append

 extend

 insert

 sort

Let’s see what they do through examples…

List Methods: append

Before:

x.append(100)

After: 3 1 7 5 x:

 0 1 2 3 4

100

Use append when you want to “glue” an item on the end of a given list.

 3 1 7 5 x:

 0 1 2 3

List Methods: extend

Before:

t = [100,200]

x.extend(t)

After: 3 1 7 5 x:

 0 1 2 3 4 5

100

 3 1 7 5 x:

 0 1 2 3

200

Use extend when you want to “glue” one list onto the end of another list.

List Methods: insert

Before:

i = 2

a = 100

x.insert(i,a)

After: 3 100 1 5 x:

 0 1 2 3 4

 7

 3 1 7 5 x:

 0 1 2 3

Use insert when you want to insert an item into the list. Items get “bumped” to the

right if they are at or to the right of the specified insertion point.

List Methods: sort

Before:

x.sort()

After: 1 5 3 x:

 0 1 2 3

 7

 3 1 7 5 x:

 0 1 2 3

Use sort when you want to order the elements in a list from little to big.

1/22/2016

4

List Methods: sort

Before:

x.sort(reverse=True)

After: 7 3 5 x:

 0 1 2 3

 1

 3 1 7 5 x:

 0 1 2 3

Use sort when you want to order the elements in a list from big to little.

An optional
argument is
being used to
take care of
this situation.

Void Methods

When the methods

 append extend insert sort

are applied to a list, they affect the list but
they do not return anything like a number or
string. They are called “void” methods.

Void methods return the value of None. This is
Python’s way of saying they do not return

anything.

Void Methods

A clarifying example:

>>> x = [10,20,30]

>>> y = x.append(40)

>>> print x

[10, 20, 30, 40]

>>> print y

None

x.append(40) does
something to x.

In particular, it appends
an element to x

It returns None and that is
assigned to y.

Void Methods/Functions

The graphics procedures DrawDisk, DrawRect,
etc., are examples of void functions.

They also return the value None. But we were
never tempted to do something like this:

 C = DrawDisk(0,0,1)

With lists, however, it is tempting to do
something like this:

 newValue = 10

 y = x.append(newValue)

So we have to be careful!

(Fruitful) List Methods

When these methods are applied to a list,

they actually return something:

 pop

 count

Let’s see what they do through examples…

The List Method pop

Before:

i = 2

m = x.pop(i)

After: 3 5 x:

 0 1 2

 7

 3 1 7 5 x:

 0 1 2 3

Use pop when you want to remove an element and assign it to a variable.

 1 m:

1/22/2016

5

The List Method count

Before:

m = x.count(7)

After: 3 1 7 x:

 0 1 2 3

 7

 3 1 7 7 x:

 0 1 2 3

Use count when you want to compute the number of items in a list
that have a value.

m: 2

Two Built-In Functions that
Can be Applied to Lists

len returns the length of a list

sum returns the sum of the elements in
 a list provided all the elements are
 numerical.

len and sum

Before

m = len(x)

s = sum(x)

After 3 1 7 x:

 0 1 2 3

 5

 3 1 5 7 x:

 0 1 2 3

m: 4

s: 16

len and sum: Common errors

>>> x = [10,20,30]

>>> s = x.sum()

AttributeError: 'list' object

 has no attribute 'sum‘

>>> n = x.len()

AttributeError: 'list' object

 has no attribute 'len'

Legal But Not What You
Probably Expect

>>> x = [10,20,30]

>>> y = [11,21,31]

>>> z = x+y

>>> print z

[10,20,30,11,21,31]

Legal But Not What You
Probably Expect

>>> x = [10,20,30]

>>> y = 3*x

>>>print y

[10,20,30,10,20,30,10,20,30]

1/22/2016

6

Setting Up “Little” Lists

The examples so far have all been small.

When that is the case, the “square bracket”
notation is just fine for setting up a list:

x = [10,40,50,30,20]

Don’t forget the commas!

Working with Big Lists

Setting up a big list requires a loop.

Looking for things in a big list requires
a loop.

Let’s consider some examples.

A Big List of Random Numbers

Roll a dice one million times. Record the outcomes in a list.

from random import randint as randi

x = []

N = 1000000

for k in range(N):

 r = randi(1,6)

 x.append(r)

x starts out as an empty list and is built
up through repeated appending.

This Does Not Work

from random import randint as randi

x = []

N = 1000000

for k in range(N):

 r = randi(1,6)

 x[k] = r

x[k] = r

IndexError: list assignment index out of range

x[0] = r does not work because x is the empty list—it has no components

A List of Square Roots

from math import sqrt

x = []

N = 1000000

for k in range(N):

 s = sqrt(k)

 x.append(s)

Same idea. Create a list through repeated appending.

A Random Walk Example

from random import randint as randi

x = [0]

k = 0

x[k] is robot’s location after k hops

while abs(x[k])<=10:

 # Flip a coin and hop right or left

 r = randi(1,2)

 if r==1:

 new_x = x[k]+1

 else:

 new_x = x[k]-1

 k = k+1

 x.append(new_x)

1/22/2016

7

A Random Walk Example

from random import randint as randi

x = [0]

k = 0

x[k] is robot’s location after k hops

while abs(x[k])<=10:

 # Flip a coin and hop right or left

 r = randi(1,2)

 if r==1:

 new_x = x[k]+1

 else:

 new_x = x[k]-1

 k = k+1

 x.append(new_x)

Notice
that x is
initialized
as a
length-1
list. The
robot
starts
at the
origin .

Be Careful About Types

This is OK and synonymous with x = [0,10]:

 x = [0]
 x.append(10)

This is not OK:

 x = 0
 x.append(10)

AttributeError: 'int' object has

 no attribute 'append'

You need the square
brackets. It is your way
of telling Python that
X is a list, not an int.

Be Careful About Types

>>> x = 0

>>> type(x)

<type 'int'>

>>> x = [0]

>>> type(x)

<type 'list'>

Functions and Lists

Let’s start with a function that returns a list.

In particular, a function that returns a
list of random integers from a given
interval.

Then we will use that function to estimate
various probabilities when a pair of dice are
rolled.

A List of Random Integers

from random import randint as randi

def randiList(L,R,n):

 “““ Returns a length-n list of

 random integers from interval [L,R]

 PreC: L,R,n ints with L<=R and n>=1

 ”””

 x = []

 for k in range(n):

 r = randi(L,R)

 x.append(r)

 return x

Outcomes from Two Dice Rolls

Roll a pair of dice N times

Store the outcomes of each dice roll
in a pair of length-N lists.

Then using those two lists, create a third
list that is the sum of the outcomes
in another list.

1/22/2016

8

Outcomes from Two Dice Rolls

Example:

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

 5 9 6 4 D:

 0 1 2 3

How to Do It

N = 1000000

D1 = randiList(1,6,N)

D2 = randiList(1,6,N)

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 0

 4

At the start of the loop D: []

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 0

 4

TwoThrows = D1[0]+D2[0] D: []

TwoThrows --> 5

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 0

 4

D.append(5)

TwoThrows --> 5

 5 D:

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 1

 4

TwoThrows= D1[1]+D2[1]

TwoThrows --> 4

 5 D:

1/22/2016

9

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 1

 4

D.append(4)

TwoThrows --> 4

 5 D:

 4

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 2

 4

TwoThrows= D1[2]+D2[2]

TwoThrows --> 9

 5 D:

 4

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 2

 4

D.append(9)

TwoThrows --> 9

 5 D:

 4 9

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 3

 4

TwoThrows = D1[3]+D2[3]

TwoThrows --> 9

 5 D:

 4 9

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 3

 4

TwoThrows = D1[3]+D2[3]

TwoThrows --> 6

 5 D:

 4 9

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

k -->

N -->

 3

 4

D.append(6)

TwoThrows --> 6

 5 D:

 4 9 6

1/22/2016

10

How It Works

 2 5 4 1 D1:

 0 1 2 3

 3 4 2 3 D2:

 0 1 2 3

N = 4

D = []

for k in range(N):

 TwoThrows = D1[k] + D2[k]

 D.append(TwoThrows)

N -->

k --> 4

 4

All Done!

TwoThrows --> 6

 5 D:

 4 9 6

Tabulating Outcomes

We have simulated the rolling of a pair of
dice N times.

The outcomes are recorded in the list D.

New problem:
 How many 2’s were there?
 How many 3’s were there?
 :
 How many 12’s were there?

Tabulating Outcomes

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

count:

count[2] keeps track of the number of 2’ s thrown
count[10] keeps track of the numberof 10’ s thrown

Tabulating Outcomes

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

The variable i is assigned the outcome
of the k-th 2-die roll.

Tabulating Outcomes

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

Suppose:

i --> 7

 0 0 3 1 5 8 7 2 1 6 9 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12

count:

Tabulating Outcomes

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

Suppose i --> 7

then the assignment count[i] = count[i]+1

effectively says count[7] = count[7]+1

1/22/2016

11

Tabulating Outcomes

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

Before:

i --> 7

 0 0 3 1 5 8 7 2 1 6 9 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12

count:

 0 0 3 1 5 8 7 3 1 6 9 2 1

0 1 2 3 4 5 6 7 8 9 10 11 12

count:

After:

Overall...

count = [0,0,0,0,0,0,0,0,0,0,0,0,0]

for k in range(N):

 i = D[k]

 count[i] = count[i]+1

A list of counters.

Sample Results, N = 10000

 k count[k]

 2 293

 3 629

 4 820

 5 1100

 6 1399

 7 1650

 8 1321

 9 1149

 10 820

 11 527

 12 292

for k in range(2,13):

 print k,count[k]

