
22. More Complicated Classes

Topics:
 Example: The class Fraction
 Operator Overloading
 Class Invariants
 Example: The class SimpleDate
 Class Variables
 deepcopy

A Class For Manipulating
Fractions

2/3 + 13/6 = (2*6+13*3)/(3*6)

 = 51/18

 = 17/6

You in Grade
School:

>>> x = Fraction(2,3)

>>> y = Fraction(13,6)

>>> z = x+y

>>> print z

17/6

Python in
College:

A Class For Manipulating
Fractions

2/3 * 3/4 = (2*3)/(3*4)

 = 6/12

 = 1/2

You in Grade
School:

Python in
College:

>>> x = Fraction(2,3)

>>> y = Fraction(3,4)

>>> z = x+y

>>> print z

1/2

Let’s Define a Class to Do This
Stuff

class Fraction(object):

 """

 Attributes:

 num: the numerator [int]

 den: the denominator [int]

Not good enough. Do not want zero denominators!

"""

Let’s Define a Class to Do This
Stuff

class Fraction(object):

 """

 Attributes:

 num: the numerator [int]

 den: the denominator [nonzero int]

Still not good enough. Fractions should be
reduced to lowest terms, e.g., -3/2 not -24/16

 """

A Note About Greatest
Common Divisors

 p q gcd(p,q) p/q

 16 24 8 2/3

 19 47 1 19/47

 15 25 5 3/5

Reducing a fraction to lowest terms involves
finding the gcd of the numerator and
denominator and dividing.

Computing the Greatest
Common Divisor

def gcd(a,b):

 a = abs(a)

 b = abs(b)

 r = a%b

 while r>0:

 a = b

 b = r

 r = a%b

 return b

Euclid’s
Algorithm

300BC

We will

assume this
is given and won’t
worry why it works

Back to the Class Definition

class Fraction(object):

 """

 Attributes:

 num: the numerator [int]

 den: the denominator [nonzero int]

 num/den is reduced to lowest terms

These “rules” define a class invariant. Properties
that all Fraction objects obey.

 """

The Constructor

def __init__(self,p,q=1):

 d = gcd(p,q)

 self.num = p/d

 self.den = q/d

>>> x = Fraction(10,4)

>>> print x

5/2

Whole numbers are fractions
too. Handy to use the optional
argument feature.

>>> x = Fraction(10)

>>> print x

10/1

Let’s Look at the Methods
Defined in the Class Fraction

Informal synopsis:

 in out

negate 2/3 -2/3

Invert 2/3 3/2

__add__ 2/3 + 1/6 5/6

__mul__ 2/3 * 1/6 1/9

The double underscore methods make a nice notation possible.
Instead of f1.add(f2) we can just write f1+f2.

The negate Method

 def negate(self):

 """ Returns the negative of self

 """

 F = Fraction(-self.num,self.den)

 return P

>>> x = Fraction(6,-5)

>>> print x

-6/5

>>> y = x.negate()

>>> print y

6/5

The invert Method
 def invert(self):

 """ Returns the reciprocal of self

 PreC: self is not zero

 """

 F = Fraction(self.den,self.num)

 return F

>>> x = Fraction(100,95)

>>> print x

20/19

>>> y = x.invert()

>>> print y

19/20

Consider Addition

s = ‘dogs’ + ‘and’ + ‘cats’

x = 100 + 200 + 300

y = 1.2 + 3.4 + 5.6

What “+” signals depends on the operands.
Python figures it out.
We say that the “+” operation is overloaded.

Let’s Define “+” For Fractions

def __add__(self,f):

 N = self.num*f.den + self.den*f.num

 D = self.den*f.den

 return Fraction(N,D)

>>> A = Fraction(2,3)

>>> B = Fraction(1,4)

>>> C = A + B

>>> print C

11/12

By defining __add__ this
way we can say
 A+B
instead of
 A.__add__(B)

Underlying math:

 a/b + c/d = (ad+bc)/bd

Likewise for Multiplication

def __mul__(self,f):

 N = self.num*f.num

 D = self.den*f.den

 return Fraction(N,D)

>>> A = Fraction(2,3)

>>> B = Fraction(1,4)

>>> C = A*B

>>> print C

1/6

By defining __mul__ this
way we can say
 A*B
instead of
 A.__mul__(B)

Would Like Some Flexibility

Sometimes we would like to add an integer
 to a fraction:

 2/3 + 5 = 17/3

To make this happen Python needs to know the
type of the operands, i.e., “who is to the right
of the “+” and who is to the left of the “+”?

Using the Built-In Boolean-
Valued Function isinstance

>>> x = 3/2

>>> isinstance(x,Fraction)

False

>>> y = Fraction(3,2)

>>> isinstance(y,Fraction)

True

Feed isinstance it the “mystery” object and a class
and it will tell you if the object is an instance of the class.

A More Flexible __add__

def __add__(self,f):

 if isinstance(f,Fraction):

 N = self.num*f.den + self.den*f.num

 D = self.den*f.den

 else:

 N = self.num + self.den*f

 D = self.den

 return Fraction(N,D)

If f is a Fraction, use (a/b + c/d) = (ad+bc)/(bd)

A More Flexible __add__

def __add__(self,f):

 if isinstance(f,Fraction):

 N = self.num*f.den + self.den*f.num

 D = self.den*f.den

 else:

 N = self.num + self.den*f

 D = self.den

 return Fraction(N,D)

If f is an integer, use (a/b + f) = (a+bf)/b

A More Flexible __mul__

 def __mul__(self,f):

 if isinstance(f,Fraction):

 N = self.num*f.num

 D = self.den*f.den

 else:

 N = self.num*f

 D = self.den

 return Fraction(N,D)

If f is a Fraction, use (a/b)(c/d) = (ac)/(bd)

A More Flexible __mul__

 def __mul__(self,f):

 if isinstance(f,Fraction):

 N = self.num*f.num

 D = self.den*f.den

 else:

 N = self.num*f

 D = self.den

 return Fraction(N,D)

If f is an int, use (a/b)(f) = (af)/b

Be Careful!

>>> F = Fraction(2,3)

>>> G = F + 1

>>> print G

5/3

>>> H = 1 + F

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s)

for +: 'int' and 'instance'

When you add an int to
a Fraction, the int must
be on the right side of
the +

An Example

n = 15

s = Fraction(0)

for k in range(1,n+1):

 s = s + Fraction(1,k)

print s

Let’s compute 1 + 1/2 + 1/3 + … + 1/15

1195757/360360
This “+” invokes __add__.

Next, a Class that Supports
Computations with Dates

If Today is July 4, 1776,
then What is Tomorrow’s Date?

>>> D = SimpleDate('7/4/1776')

>>> print D

July 4, 1776

>>> E = D.Tomorrow()

>>> print E

July 5, 1776

The Check is in the Mail
and will Arrive in 1000 Days

>>> D = SimpleDate('1/1/2016')

>>> A = D+1000

>>> print A

September 27, 2018

How Many Days from
Pearl Harbor to 9/11?

>>> D1 = SimpleDate('9/11/2001')

>>> D2 = SimpleDate('12/7/1941')

>>> NumDays = D1-D2

>>> print NumDays

21828

Class Variables

To pull this off, it will be handy to have a
“class variable” that houses information
that figures in date-related computations…

nDays =[0,31,28,31,30,31,30,31,31,30,31,30,31]

The Attributes

class SimpleDate(object):

 """

 Attributes:

 m: index of month [int]

 d: the day [int]

 y: the year [int]

 m, d, and y identify a

 valid date.

 """

The Leap Year Problem

def isLeapYear(self):

 """ Returns True if and only if

 self encodes a date that part of

 a leap year.

 """

 thisWay = ((y%100>0) and y%4==0)

 thatWay = ((y%100==0) and (y%400==0))

 return thisWay or thatWay

An integer y is a leap year if it is not a century
year and is divisible by 4 or if is a century year
and is divisible by 400.

Visualizing a SimpleDate
Object

>>> D = SimpleDate(‘7/4/1776’)

 D
 7 m

 4 d

 SimpleDate

 1776 y

The SimpleDate Constructor

def __init__(self,s):

 """ Returns a reference to a SimpleDate

 representation of the date encoded in s.

 PreC: s is a date string of the form

 'M/D/Y'where M, D and Y encode the month

 index, the day, and the year.

 """

 v = s.split('/')

 m = int(v[0]),d = int(v[1]),y = int(v[2])

 self.m = m, self.d = d, self.y = y

If s = ‘7/4/1776’ then v = [‘7’,‘4’,‘1776’]

The SimpleDate Constructor

Note that
 D = SimpleDate(‘7/32/1776’)

and
 D = SimpleDate(‘2/29/2015’)

produce SimpleDate objects that encode
invalid dates.

The SimpleDate Constructor

def __init__(self,s):

 """ Returns a reference to a SimpleDate

 representation of the date encoded in s.

 PreC: s is a date string of the form

 'M/D/Y'where M, D and Y encode the month

 index, the day, and the year.

 """

 v = s.split('/')

 m = int(v[0]);d = int(v[1]);y = int(v[2])

 self.m = m; self.d = d; self.y = y

A good place to guard against “bad” input using assert.

Use Class Variable nDays

nDays =[0,31,28,31,30,31,30,31,31,30,31,30,31]

v = s.split('/')

m = int(v[0]);d = int(v[1]);y = int(v[2])

assert 1<=m<=12, 'Invalid Month'

assert 1<=d<=self.nDays[m], 'Invalid Day'

Needs more work. Does not handle leap year situations.
Nothing wrong with SimpleDate(‘2/29/2016’)

Some SimpleDate Methods

Tomorrow the next day’s date

__eq__ when are two dates the same?

__add__ ‘7/4/1776’ + 364 is ‘7/3/1777’

__sub__ ‘3/2/2016’ – ‘2/28/2016’ is 3

Informally…

Visualizing the Overall Class

class SimpleDate(object):

def __init__(self,s):

Methods

Class Variables

def __str__(self):

def __eq__(self,other):

def isLeapYear(self):

def __sub__(self,other):

def __add__(self,other)

def Tomorrow(self):

nDays = [blah]

Constructor

The Method Tomorrow

>>> D = SimpleDate(‘7/4/1776’)

>>> T = D.Tomorrow()

>>> print T

July 5, 1776

D

 7 m

 4 d

 SimpleDate

 1776 y

 7 m

 5 d

 SimpleDate

 y

T Pretty printing
via __str__

 1776

Need a bunch of if constructions to handle
end-of-month and end-of-year situations
with possible leap year issues:

 ‘7/4/1776’ ---> ‘7/5/1776’
 ‘2/28/1776’ ---> ‘2/29/1776’

 ‘2/28/1777’ ---> ‘3/1/1777’

 ‘7/31/1776’ ---> ‘8/1/1776’

 ‘12/31/1776’ ---> ‘1/1/1777’

The Method Tomorrow

The __eq__ Method

 def __eq__(self,other):

 """ Returns True if and only if other

 encodes the same date as self

 """

 B1 = self.m == other.m

 B2 = self.d == other.d

 B3 = self.y == other.y

 return B1 and B2 and B3

>>> D1 = SimpleDate('7/4/1776')

>>> D2 = SimpleDate('4/1/1066')

>>> D1==D2

False

The __add__ Method

 def __add__(self,n):

 """ Returns a date that is n days

 later than self.

 PreC: n is a nonegative integer.

 """

 Day = self

 for k in range(n):

 Day = Day.Tomorrow()

 return Day

>>> D = SimpleDate(‘1/1/2016’)

>>> E = D + 365

>>> print E

December 31, 2016

The __sub__ Method

 def __sub__(self,other):

 ""“ D2-D1 returns the number of days from

 D1 to D2. D2 must be the later date.

 """

 k = 0

 Day = other

 while not (Day==self):

 k+=1

 Day = Day.Tomorrow()

 return k

>>> D1 = SimpleDate('9/11/2001')

>>> D2 = SimpleDate('12/7/1941')

>>> D1-D2

21828

Referencing a Class Variable

def Tomorrow(self):

 m = self.m

 d = self.d

 y = self.y

 Last = self.nDays[m]

 if isLeapYear(y) and m==2:

 Last+=1

 :

nDays =[0,31,28,31,30,31,30,31,31,30,31,30,31]

More on Copying Objects

A subtle issue is involved if you try to copy
objects that have attributes that are
objects themselves.

More on Copying Objects

class MyColor:

 """

 Attributes:

 rgb: length-3 float list

 name: str

 """

 def __init__(self,rgb,name):

 self.rgb = rgb

 self.name = name

To illustrate consider this class

More on Copying Objects

 rgb

 ‘red’ name

 0 0 1
A

>>> A = MyColor([1,0,0],’red’)

More on Copying Objects

 rgb

 ‘red’ name

 0 0 1
A

>>> B = copy(A)

 rgb

 ‘red’ name

B

More on Copying Objects

 rgb

 ‘red’ name

 0 0 1
A

>>> B = copy(A)

 rgb

 ‘red’ name

B

Now let’s
make
a yellow

More on Copying Objects

 rgb

 ‘yellow’ name

 0 1 1
A

>>> A.rgb[1]=1

>>> A.name = ‘yellow’

 rgb

 ‘red’ name

B

Unintended
Effect

B.Rgb refers
to a yellow
triple

More on Copying Objects

 rgb

 ‘red’ name

 0 0 1
A

>>> B = deepcopy(A)

 rgb

 ‘red’ name

 0 0 1
B

deepcopy
copies
everything

