1/22/2016

13B. Loops and Lists

Topics:
Functions that return more than 1 thing
Nested Loops
Map

Computing the Diameter of a
Cloud of Points

500 Points. Which two are furthest apart
and what is their separation?

Same Problem:
What's the Biggest Number in
This Table?

4
524 1783 102 166207 S04 930 B2 1431299

0218 553213 118023 141960 2152 49309 IGEI00 279552 3151ad 653260 36545

Which twocities are furthest apart
and what is their separation?

It Will Have Three Functions

MakeCloud (n,sigma)

This generates twolists x and y that define
the coordinates of the points in the cloud.

Diameter(x,y)

Thiswill compute the diameter of the cloud
using the (x,y) coordinates of its points.

ShowCloud (x,y)
Thiswill use simpleGraphics to display the
cloud and highlight the “diameter points”.

The Function MakeCloud

MakeCloud Returns Two Lists

from random import normalvariate as randn

def MakeCloud (n, sigma) : \

x=[]
y=I1 The normal
for k in range (n): distribution
r = randn (0,sigma)
x.append (r)
r = randn (0,sigma)
y.append (r)
return (x,y)

from random import normalvariate as randn

def MakeCloud (n,sigma) :
x=[]
y=I[1
for k in range(n):

New Feature

Afunction
r = randn (0, sigma) that returns
X.append (r) more than
r = randn (0,sigma) one thing.

y.append(i/ Note the
return (x,y)

parentheses




1/22/2016

MakeCloud Returns Two Lists

MakeCloud

>>> (x,y)
>>> print

MakeCloud(3,1)

H]

>>> print y

[-2.328, -0.044, -0.241]

[ 2.737, 2.078, -1.272]

Note the parentheses

from random import normalvariate as randn

Old Stuff
def MakeCloud (n,sigma) :
x=[] xandy start
=11 outasempty
y . lists.
for k in range (n) :
r = randn (0, sigma) Repeatedly
x.append (r) generatea
r = randn (0, sigma) random number
y.append () and append fo x
cuEn X,y Ditto fory

The Diameter Function: What
I+ Computes

The “"diameter
points” and the
distance

betweenthem

TR IHIbS--T-6-3~6-3-2-10 12 343 6 7 £ 3 W11

Input: lists x and y that define the yellow dots

Diameter: Formal Specs

def Diameter(x,y):
""" Returns (d,imax,jmax) where d is a
float that is the diameter of a cloud of
points defined by lists x and y. imax and
jmax are ints that are the indices of the
diameter points.

The diameter of a cloud of points is the
maximum distance between any two points in
the cloud. The two points for which this
occurs are called diameter points.

PreC: x and y are lists of floats with the
same length.

Diameter: The Implementation

def Diameter(x,y):
d=0
n = len (x)
for i in range(n):
for j in range(n):
dx = x[i]-x[]]
dy = y[i]l-y[3]
dij = sqrt(dx**2+dy**2)

if dij>d:
d = dij New Feature
imax = i
jmax = j Nested Loops

return (d,imax,jmax)

Nested Loops

In this situation we have a loop whose
body contains a loop

for blahblahblah

and - contains a loop.




1/22/2016

Nested Loops: A Simple Example

for i in range(2):
for j in range(3):
print i,j
print ‘Inner’
print ‘Outer’

Nested Loops: A Simple Example

for i in range(2):

for j in range(3):
print i,j

print ‘Inner’

print ‘Outer’

| Execute the loop body with i=0

Nested Loops: A Simple Example

for i in range(2):

for j in range(3):
print i,j

print ‘Inner’

o o
H o

print ‘Outer’

Inner

|ExecuTe the loop body with i=0

Nested Loops: A Simple Example

for i in range(2):

for j in range(3):
print i,j

print ‘Inner’

o o
= o

print ‘Outer’
0 2
Inner

| Execute the loop body with i=1

Nested Loops: A Simple Example

for i in range(2):

for j in range(3):
print i,j

print ‘Inner’

print ‘Outer’

|ExecuTe the loop body with i=1

HHD—‘HEOOO
ND—‘O;‘E NEOo

nner

Nested Loops: A Simple Example

for i in range(2):

for j in range(3):
print i,j

print ‘Inner’

print ‘Outer’

Go to the next statement after
the loop body.

HI—‘I—‘I—‘EOOO
NHOS‘E NPk O

:




1/22/2016

Nested Loops: A Simple Example

for i in range(2):

for j in range(3):
print i,j

print ‘Inner’

print ‘Outer’

Go to the next statement after
the loop body.

HHHHEOOO
NHOQ NP O

g

2
§

Back to Diameter

When developing nested-loop solutions,

it is essential to apply the methodology of
step-wise refinement, perhaps preceded
by a small example

Aspects of our problem

- Must check all possible pairs of points.
-Look at their separation distance
- What's the largest among these distances?

Suppose There Are 3 points

From To Dist
(x[0], [y[0]) (x[0],y[0]) 0
(x[0], [y[0]) (x[1],y[1]) 7
(x[0], [y[0]) (x[2],y[2]) 9
(x[1],[y[1]) (x[0],y[0]) 7
(x[1], [y[1]) (x[1],y[1]) 0
(x[1], [y[1]) (x[2],y[2]) 10
(x[2],[y[2]) (x[0],y[0]) 9
(x[2], [y[2]) (x[1],y[1]) 10
(x[2], [y[2]) (x[2],y[2]) 0

Number of possibilities.: 9 = 3x3

Suppose There Are 3 points

From To Dist
(x[0], [y[O]) (x[0],y[0]) 0
(x[0], [y[O]) (x[1]1,y[1]) 7
(x[0], [y[O0]) (x[2],y[2]) 9
(x[1], [y[1]) (x[01,y[0]) 7
(x[1], [y[1]) (x[1],y[1]) 0
(x[1], [y[1]) (x[2],y[2]) 10
(x[2], [y[2]) (x[0],y[0]) 9
(x[2], [y[2]) (x[11,y[1]) 10
(x[2], [y[2]) (x[2],y[2]) 0

Number of possibilities.: 9 = 3x3

And now, stepwise refinement
inaction....

First Solution

0

len (x)

for i in range(n):

# Examine the distance from

# (x[i],y[i]) to every other point




1/22/2016

Second Solution

d=20
n len (x)
for i in range(n):

for j in range(n):
# Examine the distance from
# (x[1i]1,y[i]) to (x[31,y[31)

Third Solution

d=0
n = len (x)
for i in range(n):
for j in range(n):
dx = x[i]-x[J]
dy = yl[i]l-yI[3j]
dij = sqrt(dx**2+dy**2)
# Compare dij to d revising
# the latter if necessary

Fourth Solution

d=0
n = len(x)
for i in range(n):
for j in range(n):
dx = x[i]-x[3]

dy = y[i]l-yI[]l
dij = sqrt(dx**2+dy**2)
if dij>d:

d = dij

imax = i

jmax = j

return (d,imax, jmax)

Fourth Solution

d=0
n = len (x)
for i in range(n):
for j in range(n):
dx = x[i]-x[3]
dy = y[il-y[]]
dij = sqrt(dx**2+dy**2)

if dij>d:
d = dij We have to
imax = i <—— "remember”
jmax = j where the max
return (d,imax, jmax) SEEIRERC

occurs.

Next Up: ShowCloud

TR I08 -8 -6-3~4-3-1 2343678301

ShowCloud: Specs

def ShowCloud(x,y):
""" Displays a point cloud
defined by x and y and highlights
the two points that define
its diameter.

PreC: x and y are lists of
floats with the same length.




1/22/2016

First: How Biga Window?

New Feature:

map

xMax = max (mapfabs,x))

yMax = max (map (abs,y))

M = max (xMax,yMax)

MakeWindow (1.1*M,bgcolor=BLACK)

Idea: look at the x and y coordinates of
the points and see how big they can be.

Map: Apply a Function to Each
Element in aList

Example. Apply the absolute value function
toeverylist element

>>> x = [10,-20,-40]
>>> x = map (abs,x)
>>> print x
[10,20,40]

Map: Apply a Function to Each
Element in a List

Example. Apply the floor function
toeverylist element:

>>> x = [11.3, 12.4, 15.0]
>>> x = map (math.floor, x)
>>> print x
[11.0,12.0,15.0]

Map: Apply a Function to Each
Element in aList

This:

y =[]
for k in range(len(x)):
y.append (math.sqrt (x([k]))

Is equivalent to this:

|y = map (math.sqrt, x) |

Assuming that x is an initialized list of nonnegative numbers

Map: Formal Syntax

map ( N . [
The name of a function that

_ returns a value. Every element in

the list must satisfy its precondition.

I:I The name of a list.

Now, Back to ShowCloud




1/22/2016

First: How Biga Window? Next, Use DrawDisk For
Each Point

e = max (nap (ab2 ) e b oiametee x9

X o man G pian) Fox K in range (ien ()

MakeWindow (1.1*M,bgcolor=BLACK) DrawDisk (x[k],y[k],2*r,Fil1lColor=CYAN)

DrawDisk (x[k],y[k],r, FillColor=YELLOW)

x = [-19,12,-4]
max (map (abs, x) ) iand j are the indices of the diameter points.
>>> 19
Before theyare displayed, we paint a larger
cyan dot.




