
20. Introduction to Classes

Topics:
 Class Definitions
 Constructors
 Example: The class Point

 Functions that work with Point Objects
 Defining methods

What a Simple Class Definition
Looks Like

class Point:

 """

 Attributes:

 x: float, the x-coordinate of a point

 y: float, the y-coordinate of a point

 """

 def __init__(self,x,y):

 self.x = x

 self.y = y

A class can be used to “package’’ related data.

One Reason for classes:
They Elevate the Level Thinking

>>> P = Point(2,1)

>>> Q = Point(6,4)

>>> d = P.Dist(Q)

>>> print d

5 (2,1)

(6,4)

Here, Dist is a method and P.Dist(Q)
says “compute and return the distance from
point P to point Q.

>>> P = Point(2,1)

>>> Q = Point(6,4)

>>> d = P.Dist(Q)

>>> print d

5 (2,1)

(6,4)

By having a Point class we can think at the
 “point level” instead of at the “xy level”

One Reason for classes:
They Elevate the Level Thinking

Classes and Types

Recall that a type is a set of values and

operations that can be performed on those values.

The four basic “built-in” types:

 int, float, str, bool

Classes are a way to define new types.

Examples

By suitably defining a rectangle class, we could

say something like

if R1.intersect(R2):

 print ‘Rectangles R1 and R2 intersect’

Examples

By suitably defining a polynomial class, we

could perform operations like

 p = q + r

where q and r are polynomials that are

added together to produce a polynomial p

How to Define a Class

A Point Class

class Point(object):

 """

 Attributes:

 x: float, the x-coordinate of a point

 y: float, the y-coordinate of a point

 """

 def __init__(self,x,y):

 self.x = x

 self.y = y

A class provides a “blue print” for packaging data.
The data is stored in the attributes.

A Point Class

class Point(object):

 """

 Attributes:

 x: float, the x-coordinate of a point

 y: float, the y-coordinate of a point

 """

 def __init__(self,x,y):

 self.x = x

 self.y = y

This special function, called a constructor,
does the packaging.

A Point Class

class Point(object):

 """

 Attributes:

 x: float, the x-coordinate of a point

 y: float, the y-coordinate of a point

 """

 def __init__(self,x,y):

 self.x = x

 self.y = y

The name of this class is “Point”

The ‘’ __init__ ‘’ Function

def __init__(self,x,y):

 """ Creates a Point object

 PreC: x and y are floats

 """

 self.x = x

 self.y = y

That’s a double underscore: __init__

The ‘’ __init__ ‘’ Function

def __init__(self,x,y):

 """ Creates a Point object

 PreC: x and y are floats

 """

 self.x = x

 self.y = y

“self” is always the first argument for any
method defined in a class.

The “ __init__ ‘’ Function

def __init__(self,x,y):

 """ Creates a Point object

 PreC: x and y are floats

 """

 self.x = x

 self.y = y

The attributes are assigned values.

Calling the Constructor
Creates an Object

Calling the Constructor

>>> a = 3

>>> b = 4

>>> Q = Point(a,b)

 3 x

 4 y

 Point
Q

 3

 4

a

b

The constructor’s
name is the name

of the class

Calling the Constructor

>>> a = 3

>>> b = 4

>>> Q = Point(a,b)

 3 x

 4 y

 Point
Q

 3

 4

a

b

This creates
a Point object

Calling the Constructor

>>> a = 3

>>> b = 4

>>> Q = Point(a,b)

 3 x

 4 y

 Point
Q

 3

 4

a

b

The constructor
returns a reference,
in effect, the red arrow.

Objects: The Folder Metaphor

In the office, manila folders organize
data.

Objects organize data.

A point object houses float variables x and y,
called the attributes, where (x,y) is the point.

Objects: The Folder Metaphor

In the office manila folders organize
data.

Objects organize data.

A color object might house an rgb list like [1,0,1]
and a string that names it, i.e., ‘magenta’

Visualizing a Point Object

>>> a = 3

>>> b = 4

>>> Q = Point(a,b)

 3 x

 4 y

 Point
Q

 3

 4

a

b

x and y are
attributes

Attributes are
variables that live
inside objects

Accessing an Attribute

The “Dot Notation” Again

Not a coincidence: modules are objects

Accessing Attributes

>>> Q = Point(3,4)

>>> print Q

(3.000, 4.000)

>>> Q.x = Q.x + 5

>>> print Q

(8.000, 4.000)

Q.x is a variable and can ‘’show up” in all
the usual places, i.e., in an assignment
statement.

Accessing Attributes

>>> Q = Point(3,4)

>>> print Q

(3.000, 4.000)

>>> Q.x = Q.x + 5

>>> print Q

(8.000, 4.000)

Seems that we can print an object!

The “ __str__ “ function

 def __str__(self):

 return '(%6.3f,%6.3f)' %(self.x,self.y)

This “double underscore” function is part of
the class definition.

Whenever a statement like

 print P

is encountered, then P is “pretty printed” according
to the format rules.

Two Examples

A function that returns a Point Object:

 RandomPoint(Lx,Rx,Ly,Ry)

A function that has input parameters that are
Point objects:

 Midpoint(P,Q)

Computing a Random Point

def RandomPoint(Lx,Rx,Ly.Ry):

 """ Returns a point that is randomly chosen

 from the square Lx<=x<=Rx, Ly<=y<=Ry.

 PreC: Lx and Rx are floats with Lx<Rx

 Ly and Ry are floats with Ly<Ry

 """

 x = randu(Lx,Rx)

 y = randu(Ly,Ry)

 P = Point(x,y)

 return P

calling the
constructor

Computing a Midpoint

def Midpoint(P1,P2):

 """ Returns a point that is the midpoint of

 a line segment that connects P1 and P2.

 PreC: P1 and P2 are point objects.

 """

 xm = (P1.x + P2.x)/2.0

 ym = (P1.y + P2.y)/2.0

 Q = Point(xm,ym)

 return Q

Computing a Midpoint

def Midpoint(P1,P2):

 """ Returns a point that is the midpoint of

 the line segment that connects P1 and P2.

 PreC: P1 and P2 are points.

 """

 xm = (P1.x + P2.x)/2.0

 ym = (P1.y + P2.y)/2.0

 Q = Point(xm,ym)

 return Q

calling the
constructor

referencing
a point’s
attributes

Methods

s.upper(),s.find(s1),s.count(s2),

s.append(s2), s.split(c), etc

Methods are functions that are defined
inside a class definition.

We have experience using them with strings

and lists

L.append(x),L.extend(x),L.sort(),etc

Methods

Now we show how to implement them.

We will design a method for the Point
class that can be used to compute the
distance between two points.

It will be used like this:

 delta = P.Dist(Q)

Note the dot notation
syntax for method
Calls.

class Point(object):

 def __init__(self,x,y):

 self.x = x

 self.y = y

 def Dist(self,other):

 """ Returns distance from self to other.

 PreC: other is a point

 """

 dx = self.x - other.x

 dy = self.y - other.y

 d = sqrt(dx**2+dy**2)

 return d

A Point Class Method: Dist

Assume proper importing from math class

Using the Dist Method

>>> P = Point(3,4)

>>> Q = Point(6,8)

>>> deltaPQ = P.Dist(Q)

>>> deltaQP = Q.Dist(P)

>>> print deltaPQ,deltaQP

5.0 5.0

Let’s create two point objects and compute
the distance between them. This can
be done two ways…

The usual
“dot” notation
for invoking
a method

class Point(object)

 :

 def Dist(self,other):

 """ Returns distance from self to other.

 PreC: P is a point

 """

 dx = self.x - other.x

 dy = self.y - other.y

 d = sqrt(dx**2+dy**2)

 return d

Method Implementation:
Syntax Concerns

Note the use of “self”.
It is always the first argument of a method.

class Point(object):

 :

 def Dist(self,other):

 """ Returns distance from self to other.

 PreC: P is a point

 """

 dx = self.x - other.x

 dy = self.y - other.y

 d = sqrt(dx**2+dy**2)

 return d

How to Think “Method”

Think like this: “We are going to apply the method
dist to a pair of Point objects, self and other.”

class Point(object):

 :

 def Dist(self,other):

 """ Returns distance from self to other

 PreC: other is a point

 """

 dx = self.x - other.x

 dy = self.y - other.y

 d = sqrt(dx**2+dy**2

 return d

Method Implementation:
Syntax Concerns

Two Facts:
 Indentation is important.
 A class method is part of the class definition.

Visualizing a Method Call
Using State Diagrams

P = Point(3,4)

Q = Point(6,8)

D = P.Dist(Q)

Let’s see what happens when we execute
the following:

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 P

 d

 3 x

 4 y

 Point

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 6 x

 8 y

 Point

 P Q

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 6 x

 8 y

 Point

 P Q

 dx = self.x-other.x

 dy = self.y-other.y

 d = sqrt(dx**2+dy**2)

 return d

 self other

Dist

class Point(object):

 :

 def Dist(self,other):

 """ Returns distance from self to other.

 PreC: other is a point

 """

 dx = self.x - other.x

 dy = self.y - other.y

 d = sqrt(dx**2+dy**2)

 return d

 Method: Dist

Think of self and other as input parameters.

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 P Q

 dx = self.x-other.x

 dy = self.y-other.y

 d = sqrt(dx**2+dy**2)

 return d

 self other -3 dx:

Control passes to
the method Dist

Dist

 6 x

 8 y

 Point

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 6 x

 8 y

 Point

 P Q

 dx = self.x-other.x

 dy = self.y-other.y

 d = sqrt(dx**2+dy**2)

 return d

 self other -3 dx: -4 dy:

Dist

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 6 x

 8 y

 Point

 P Q

 dx = self.x-other.x

 dy = self.y-other.y

 d = sqrt(dx**2+dy**2)

 return d

 self other -3 dx: -4 dy: d: 5

 3 x

 4 y

 Point

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 6 x

 8 y

 Point

 P Q

 dx = self.x-other.x

 dy = self.y-other.y

 d = sqrt(dx**2+dy**2)

 return d

 self other -3 dx: -4 dy: d: 5

5 D:

Dist

Visualizing a Method Call
 P = Point(3,4)

 Q = Point(6,8)

 D = P.Dist(Q)

 3 x

 4 y

 Point

 6 x

 8 y

 Point

 P Q
5 D:

Checking Things Out

>>> P1 = RandomPoint(-10,10)

>>> P2 = RandomPoint(-10,10)

>>> M = Midpoint(P1,P2)

>>> print M.Dist(P1)

4.29339610681

>>> print M.Dist(P2)

4.29339610681

Summary: Base Types vs Classes

 Base Types

Built into Python
Instances are values
Instantiate w/ Literals
Immutable

 Classes

Defined in Modules
Instances are objects
Instantiate w/ constructors
Mutable

A Note on Copying an Object

There is a difference between creating an
alias and creating a genuine second copy of
an object.

This Does Not Create a Copy…
>>> Q = Point(3,4)

>>> P = Q

 3 x

 4 y

 Point
Q

P

It creates an alias, not a copy.

This Does Create a Copy…
>>> Q = Point(3,4)

>>> P = Point(Q.x,Q.y)

 3 x

 4 y

 Point

Q

P
 3 x

 4 y

 Point

And This Also Creates a Copy…
>>> Q = Point(3,4)

>>> P = copy(Q)

 3 x

 4 y

 Point

Q

P
 3 x

 4 y

 Point

The function copy must be imported.

The Module copy

from copy import copy

Import this function and use it to make copies
of objects.

deepcopy is another useful function from
this module—more later.

Using copy

>>> Q = Point(3,4)

>>> P1 = copy(Q)

>>> P1.x = 5

>>> print Q

(3.000, 4.000)

>>> print P1

(5.000, 4.000)

We are modifying P1, but Q remains the same

Methods vs Functions

It is important to understand the differences

between methods and functions, i.e., how they

are defined and how they are invoked.

A >>Function<< that Returns the
Distance Between Two Points

def Dist(P1,P2):

 """ Returns the distance from P1 to P2.

 PreC: P1 and P2 are points

 """

 d = sqrt((P1.x-P2.x)**2+(P1.y-P2.y)**2)

 return d

def Dist(self,other):

 dx = self.x - other.x

 dy = self.y - other.y

 D = sqrt(dx**2+dy**2)

 return D

Methods and (Regular) Functions

def Dist(P,Q):

 dx = P.x - Q.x

 dy = P.y - Q.y

 D = sqrt(dx**2+dy**2)

 return D

>>> P = Point(3,4)

>>> Q = Point(6,8)

>>> P.Dist(Q)

5.0

>>> P = Point(3,4)

>>> Q = Point(6,8)

>>> Dist(Q,P)

5.0

