1/26/2016

25. Two-Dimensional Arrays

Topics
Motivation
The numpy Module
Subscripting
functions and 2d Arrays

Visualizing

12| 17| 49| 61 Can have a 2darray
of stringsor
objects.

38| 18| 821 77 But we will just
deal with 2d arrays

83| 531 12| 10 of numbers.

A 2D array has rows and columns.
This one has 3 rows and 4 columns.

We say it is a “3-by-4" array (a.k.amatrix)

Rows and Columns

12| 17| 49] 61

83] 53| 12| 10

Thisisrow 1.

Rows and Columns

12| 17 61
38| 18 77
83| 53 10

This is column 2.

Entries

12 ) 17| 49| 61

SRLE

83] 53| 12| 10

Thisisthe (1,2) entry.

Where Do They Come From?

Entry (i,j) is the distance from city i to city j




1/26/2016

Where Do they Come From?

Entry (i,j)is 1 if node i is connected to
node j and is O otherwise

Nodes
4 and 6

Are
connected

Captures the comectivity in
a network

co~o~Oo
H»—o»—oo
Co RO R
DDHDDD

(= I A
[ N =T

Where Do They Come From

An m-by-n array
of pixels.

Each pixel encodes

3 numbers: a red value,
agreen value, a blue
value

Soall the information
can be encoded in three
2D arrays

2d Arrays in Python

12 17| 49| 61

38| 18| 82| 77

83] 53| 12| 10

Accessing Entries

12| 17 49| 61

38 18. 77 A[1l][2]

83| 53| 12| 10

A = [[12,17,49,61],[38,18,82,77],[83,53,12,10]]

A = [[12,17,49,61],[38,18,82,771,[83,53,12,10]]

Alist of lists.

T

Accessing Entries

12 17| 49| 61

38| 18| 82| 77 A[2][1]

83 . 121 10

A = [[12,17,49,61],[38,18,82,771,[83,53,12,10]]

T

Setting Up 2D Arrays

Here is a function that returnsa reference to
anm-by-n array of zeros:

def zeros(m,n):

v =[]

for k in range(n):
v.append (0.0)

A =[]

for k in range (m):
A.append (v)

return A




1/26/2016

Python is Awkward

Turns out that base Python is not very handy
for 2D array manipulations.

The numpy module makes up for this.

We will learn just enough numpy so that
we can do elementary plotting, image
processing and other things.

Introduction to 2D Arrays
in numpy

A few essentialsillustrated
by examples.

Setting up a 2D Array of O's

>>> from numpy import *

>>>m = 3

>>> n = 4

>>> A = zeros((m,n))

>>> A

array([[ 0., ©O0., O0., O0.],
[ o., o0., 0., 0.1,
[ 0., 0., 0., 0.11)

Note how the row and column dimensions are passed to zeros

Accessingan Entry

>>> A = zeros((3,2))
>>> A[2,1] = 10
>>> A

array([[ O., 0.1,
[ 0., 0.],
[ 0., 10.]11)

Anicernotation than A[2][1].

Accessingan Entry

>>> A = array([[1,2,3],[4,5,6]1])
>>> A
array([[1, 2, 3],

[4, 5, 6]])

Using the array constructor to builda
3-by-2 array. Note all the square brackets.

Use Copy to Avoid Aliasing

>>> A = array ([[1,2],[3,4]1]) 1 2
>>> B = A 3 4
>>> A[1,1] = 10
>>> B
array([[ 1, 2],

[ 3, 10]1)

2D arraysare

>>> A = array ([[1,2],[3,41]) objects

>>> B = copy(3)
>>> A[l1,1] = 10
>>> B
array ([ [1, 2],
[3, 411)




1/26/2016

Iterationand 2D Arrays

Lots of Nested Loops

Nested Loops and 2D Arrays

A = array((3,3))
for i in range(3):
for j in range(3):

A[i,j] = (i+1)*(j+1)
1 2 3 A
3x3
2 4 6 times
table
3 6 9

Nested Loops and 2D Arrays

|A = array((3,3))|

Allocates memory, but doesn't put any values
inthe boxes. Much more efficient than the
Repeated append framework.

Understanding 2D Array Set-Up

for i in range(3):
for j in range(3):
Afli,j] = (i+1)*(j+1)

for i in range(3):
A[i,O0] (i+1) * (0+1)
A[i,1] (i+1) * (1+1)
Ali,2] (i+1) * (2+1)

Equivalent!

Understanding 2D Array Set-Up

for i in range(3):
A[i,0] = (i+1)*(0+1)

A[i,1] = (i+1)*(1+1)
A[i,2] = (i+1)*(2+1)
! I Row O is
set up when
i=0

Understanding 2D Array Set-Up

for i in range(3):
A[i,0] = (i+1)*(0+1)

A[i,1] = (i+1)*(1+1)

A[i,2] = (i+1)*(2+1)
! I Row 1is
>lale ff‘rlupwhen




1/26/2016

Understanding 2D Array Set-Up

for i in range(3):

A[i,0] = (i+1)*(0+1)

Ali,1] = (i+1)*(1+1)

A[i,2] = (i+1)*(2+1)
! 2|3 Row 2 is
> lale set up when

i=2

4 6 9

Extended Example

A company has m factories and each of which
makes n products. We'll refer to such a company
as an m-by-n company.

Customers submit purchase orders in

which they indicate how many of each

product they wish to purchase. A length-n list
of numbers that expresses this calleda PO list.

Cost and Inventory

The cost of making a product varies from
factory to factory.

Inventory varies from factory to factory.

Three Problems

A customer submits a purchase order that is to
be filled by a single factory.

Q1. How much would it cost each factory
to fill the PO?

Q2. Which factories have enough inventory
tofill the PO?

Q3. Among the factories that can fill the PO,
which one can do it most cheaply?

Ingredients

Toset ourselves up for the solution to these
problems we need to understand:

-The ideaof a Cost Array (2D)
- The idea of an Inventory Array (2D)

- The idea of a Purchase Order Array (1D)

We will use numpy arrays throughout.

Cost Array

10| 36 22 15| 62

13| 37| 21 16| 59

The value of C [k, 3] is what it costs
factory k to make product j.




1/26/2016

Cost Array
10| 36| 22| 15| 62
It costs
$12 for
C === 12] 35| 20| 12 66 factory 1
to make
product 3

13| 37 21| 16| 59

The value of C [k, ] is what it costs
factory k to make product j.

Inventory Array

381 5 99| 34| 42

I ——=>] 82 19| 83| 12| 42

51| 29] 21| 56| 87

The value of Ik, j] is theinventoryin
factory k of product j.

Inventory Array

381 5 99| 34| 42
Factory 1

can sell up

N fo 83 units
I > 82 19 83 12| 42 of product 2.

51| 29| 21| 56| 87

Thevalueof T(k,3] is theinventoryin
factory k of product j.

Purchase Order

PO -——>]1 |0 |12]129]5

The value of PO[7] is the number
product j's that the customer wants

Purchase Order

The ct

wishes to
purchase 29
product 3 units

PO -——>1 |0 |12]29]5

The value of PO[7] is the number
product j's that the customer wants

We Will Develop a Class
called
Company

We will package data and methods in a way
that makes it easy to answer Q1, Q2, and Q3
and to perform related computations.




1/26/2016

First, Some Handy Numpy
Features

Computing Row and Column

Dimension
Suppose:
10| 36| 22
I — A2-by-3
array.
12| 35| 20

I = array([[10,36,22],[12,35,20]11])

Computing Row and Column
Dimension Using shape

Suppose: Useful in functions
and methods with 2D
10| 36| 22 array arguments
I P
12| 35| 20
(mn) isa “tuple”
|(m,n) = I.shape m: 2 n: 3

shape is an attribute of the array class

Finding the Location of the
Smallest Value Using argmin

>>> from numpy import *
>>> x = array([20,40,10,70.60])

>>> iMin = x.argmin()
>>> xMin = x[iMin]
>>> print iMin, xMin
2 10

There is also an argmax method

Comparing Arrays

>>> x = array ([20,10,30])
>>> y = array ([2,1,3])
>>> z = array ([10,40,15])

>>> x>y

array([ True, True, True], dtype=bool)
>>> all (x>y)

True

>>> x>z

array ([ True, False, True], dtype=bool)
>>> any (x>z)

True

inf

Aspecial float that behaves like infinity

>>> x = inf

>>> 1/x

0

>>> x+1

Inf

>>> inf > 9999999999999
True




1/26/2016

The Class Company: Attributes

Now Let's Develop the Class class Company (object)
Corn.pany wnnn
Attributes:
C : m-by-n cost array [float]
I : m-by-n inventory array [float]

. X TV : total value [float]
Start with the attributes and the nun

constructor.
Total Value: How much is the total inventory worth ?
The Class Company: Constructor Row and Column Dimensions
def _ init (self, Inventory, Cost) : def _ init (self, Inventory, Cost) :
self.I = Inventory self.I = Inventory
self.C = Cost self.C = Cost
(m,n) = Inventory.shape (m,n) = Inventory.shape
™V =0 TV = 0
for k in range(m): for k in range(m):
for j in range (n): for j in range (n):
TV += Inventory [k,j] *Cost[k,j] TV += Inventory [k,j] *Cost[k,J]
self. TV = TV self. TV = TV
The incoming arguments are the Inventory To compute the row and column dimension of a
and Cost Arrays numpy 2D array, use the shape attribute.
Computing Total Value Computing Total Value
™v =20 ™V =20
for k in range (m): :‘hke nes‘r:d |°°'; for k in range(m):
for j in range (n): a(:'r:; :fﬂ:yeac for j in range (n):
TV += I[k,j1*C[k,]j] TV += I[k,j]1*C[k,j]
10| 36| 22 30| 40 ] 50 36| 22 40 | 50
I-- c -- I -- C --
12| 35 20 60 | 70| 80 12| 35 20 60 ] 70| 80
Inventory Array Cost Array Inventory Array Cost Array




1/26/2016

Computing Total Value

™V =20
for k in range(m):
for j in range (n):
TV += I[k,j1*C[k,]]

Computing Total Value

™V =20
for k in range(m):
for j in range (n):
TV += I[k,jI1*C[k,]]

10 22 30 50
I - C —-

12 ] 35| 20 60 | 70| 80

Inventory Array Cost Array

10| 36 30| 40

I - c --
12| 35 20 60| 70| 80
Inventory Array Cost Array

Computing Total Value

™V =20
for k in range(m):
for j in range (n):
TV += I[k,j1*C[k,]]

Computing Total Value

™V =20
for k in range(m):
for j in range (n):
TV += I[k,j]1*C[k,]]

10 | 36| 22 30 ] 40| 50

I - c —-
351 20 70 | 80
Inventory Array Cost Array

10| 36| 22 30| 40| 50
I - c —-

12 20 60 80

Inventory Array Cost Array

Computing Total Value

™v =20
for k in range(m):
for j in range (n):
TV += I[k,j1*C[k,]j]

10| 36| 22 30 ] 40| 50

12| 35 60 | 70

Inventory Array Cost Array

Now Let's Develop Methods
to Answer These 3 Questions

Q1. How much would it cost each factory
tofill a purchase order?

Q2. Which factories have enough inventory
tofill a purchase order?

Q3. Among the factories that can fill the
purchase order, which one can do it most cheaply?




1/26/2016

Q1. How Much Does it Cost
Each Factory to Process
a Purchase order?

c --->

For factory O:

1*10 + 0*36 + 12*22 + 29* 15 + 5*%62

. 36| 22| 15| 62 10. 22| 15] 62
c ——-=>| 12| 35| 20| 12 65 j=0 c —=-=>] 12| 35| 20| 12] 66 1
13| 37| 21| 16] 59 13] 37| 21| 16] 59
PO --->] 1 |0 1212915 PO ---> 1 0 1212915
=0
=0; F S
For S ! or for j in range(5):
. for j in range(5): factory O: - e ) .
factory O: s = += C[0,j] * PO[]] s = += C[0,]j] * PO[]]
10| 36 . 15| 62 10] 36] 22 62
c ——-=>| 12| 35| 20| 12 65 j=2 c —=-=>] 12| 35| 20| 12] 66 3
13| 37| 21| 16] 59 13] 37| 21| 16] 59
PO --->|1 0 1212915 PO --->| 1 0 12129] 5
s =0 s =0
For ) for j in range(5): For for j in range(5):
factory0: s = 4= c[0,3] * PO[]] factory0: s = 4= c[0,3] * PO[]]

10



1/26/2016

10 36| 22 15. 10| 36| 22 15| 62
13| 37| 21| 16| 59 13] 37 21 16] 59
=0 s =0
For for j in range(5): For for j in range (5):
factory0: s = 4= c10,31 * po[3] factoryl: s = 4= c[1,3] * PO[]]
10| 36| 22| 15] 62 To Answer Q1 We Have
C ---> 12| 351 20| 12| 66 def Order (self,PO):
130 371 211 161 59 “WW Returns an m-by-1 array that
houses how much it costs
each factory to fill the PO.
PO --->|1 0 1212915
PreC: self is a Company object
For =0 representing m factories and n
. for j in range(5): products. PO is a length-n
facforyl& = purchase order list.

+= C[k,3j] * PO[]]

1w

What the Order Method Does

10| 36| 22| 15] 62 1019
self.C -->| 12| 35| 20| 12| 66 930
13| 37 21| 16 59 1040

PO -—>1 |0 |12]|29]5

Refurns [1019,930,1040]

Implementation...

def Order (self,PO):
C = self.C
(m,n) = C.shape
theCosts = zeros((m,1))
for k in range (m):
for j in range(n):

return theCosts

theCosts[k] += C[k,j]1*PO[j]

11



1/26/2016

Using Order

Assume that the following are initialized:

I the Inventory array
C the Cost array
PO the purchase order array

>>> A = Company (I,C)
>>> x = A.Order (PO)
>>> kMin = x.argmin ()
>>> xMin = x[kMin]

kMin is the index of the factory that can most
cheaply process the PO and xMin is the cost

Q2. Which Factories
Have Enough Inventory to
Process a Purchase Order?

Who Can Fill the Purchase Order
(PO)?

381 5 99| 34| 42 Yes

I -->82] 19] 83 42 No

51| 20 21] 56| 87| Yes

PO -->]1 |O 12.5

Factory 2 can't because 12 < 29

Who Can Fill the Purchase Order
(PO)?

Yes

I --> 82| 19] 83| 12| 42 No

s1| 29| 21| 56| 87| Yes

We need to compare the rows of I with PO.

Who Can Fill the Purchase Order
(PO)?

I -=>82|19] 83| 12] 42 No

51 29| 21| 56| 87 Yes

PO --

all( I[0,:] >= PO ) is True

Who Can Fill the Purchase Order
(PO)?

381 5 99| 34| 42 Yes

s1| 29| 21| 56| 87| Yes

all( I[1,:] >= PO ) is False

12



1/26/2016

Who Can Fill T(P;DeOF;t;r‘chase Order To Answer Q2 We Have...

def CanDo (self,PO):

381 5 99| 34| 42 Yes """ Return the indices of those

factories with sufficient
I -->82]|19] 83| 12| 42| No inventory.

Yes .
PreC: PO is a purchase order
array. """

PO --

all( I[2,:] >= PO ) is True

Who Can Fill the PO? Who Can Fill the PO?

def CanDo(self,PO):

Grab the def CanDo (self,PO):
= . inventory array = X
I self.I Xt GRS I self.I Initial ize Who to
(m,n) = I.shape its row and col (m,n) = I.shape the empty list.
dimension., Then build it up
Who = [] Who = [] thru repeated
A appending
for k in range(m):

for k in range(m):
if all( I[k,:] >= PO):
Who . append (k)
return array (Who)

if all( I[k,:] >= PO):
Who . append (k)
return array (Who)

Who Can Fill the PO? Who Can Fill the PO?

def CanDo (self,PO): def CanDo (self,PO):

I = self.I I =self.I

= If every element = .
(m,n) = I.shape of I[k, ]is>= the (m,n) = I.shape Who is
Who = corresponding entry = nota

t in PO, then factory k Who [ numpy array,
for k in range(m): has suf ficient inventory

for k in range (m):
if all( I[k,:] >= PO):
Who . append (k)
return array (Who)

but
agray( Who) is
if all( I[k,:] >= PO):
Who . append (k)

return array (Who)

13



1/26/2016

Using CanDo

Assume that the following are initialized:

I the Inventory array
C the Cost array
PO the purchase order array

>>> A = Company(I,C)
>>> kVals = A.CanDo (PO)

kValsis an array that contains the indices of
those factories with enough inventory

Using CanDo

Assume that the following are initialized:

I the Inventory array
C the Cost array
PO the purchase order array

>>> A = Company (I,C)
>>> kVals = A.CanDo (PO)

If kinkValsis True,then
all(A.I[k,:]>= PO)
is True

Q3: Among the
Factories with enough
Inventory,who can fill the
PO Most Cheaply??

For Q3 We Have

def theCheapest (self,PO):
""" Return the tuple (kMin,costMin)
where kMin is the index of the factory
that can fill the PO most cheaply and
costMin is the associated cost. If no
such factory exists, return None.

PreC: PO is a purchase order list. """

theCosts = Order (PO)

Who = CanbDo (P0)

if len(Who)=0:
return None

else:

Who Can Fill the Purchase Order
Most Cheaply?

38| 5 99| 34| 42 Yes 1019

I -->82]|19]| 83 12] 42 No

51| 29| 21| 56] 87| Yes 1040

PO -->|1 |0 |12]129]5

kMin=0, costMin=1019

Implementation

def theCheapest(self,PO):
theCosts = Order (PO)
Who = CanbDo (PO)
if len(Who)==0:
return None
else:
# Find kMin and costMin

14



1/26/2016

Implementation Cont'd

# Find kMin and costMin
costMin = inf
for k in Who:
if theCosts[k]<costMin:
kMin = k
costMin = theCosts[k]
return (kMin,costMin)

Using Cheapest

Assume that the following are initialized:

I the Inventory array
C the Cost array
PO the purchase order array

>>> A = Company (I,C)

>>> (kMin,costMin) = A.Cheapest (PO)

The factory with index kMin candeliver
PO most cheaply and the cost is costMin

Updating the Inventory
After Processing a PO

Updating Inventory

I —--> 82| 19] 83| 12| 42 No

51| 29| 21| 56| 87| Yes

PO -->1 |0 |12]29]5

Before

1040

Updating Inventory

I -->82]|19]| 83 12] 42

51| 29| 21| 56| 87

PO -->|1 |0 |12]129]5

After

Method for Updating
the Inventory Array

After Processing a PO

def UpDate(self, k, PO):
n = len(PO)
for j in range (n):

# Decrease the total value

# Reduce the inventory of product j
self.I[k,j] = self.I[k,j] - PO[]]

self.TV = self.TV - self.C[k,j]*PO[j]

Maintaining the class invariant, i.e., the connection

between the I,C, and TV attributes.

15



