
1

17. Recursion

Recursive Tiling
Random Mondrian
Recursive Evaluation of n!
Tracking a Recursive Function Call

What is Recursion?

A function is recursive if it calls itself.

A pattern is recursive if it is defined
in terms of itself.

I can tell you what
this
is in terms of what
that
is.

The Concept of Recursion
Is Hard But VERY Important

Teaching Plan:

 Develop a recursive triangle-tiling procedure
 informally.

 Fully implement (in Python) a recursive
 rectangle-tiling procedure.

 Fully implement a recursive function for n!

 Fully implement a recursive function for
 sorting (in a later lecture).

Recursive Graphics

We will develop a graphics procedure that
draws this:

The procedure will call itself.

We are tiling

a triangle with

increasingly

smaller

triangles.

Tiling a Triangle

We start
with one
big triangle:

And are to
end up with
this:

Tiling a Triangle

2

Requires Repetition

Given a
yellow
triangle

Define the
inner triangle
and the 3
corner
triangles

Color the
inner triangle
and repeat the
process on the
3 corner triangles

“Repeat the Process”

Visit every
yellow triangle
and replace it
with this

We Get This… “Repeat the Process”

Visit every
yellow triangle
and replace it
with

We Get This… “Repeat the Process”

Visit every
yellow triangle
and replace it
with

3

We Get This…

Etc.

The Notion of Level

A 0-level
 tiling

A 1-level
 tiling

A 2-level
 tiling

A 3-level
 tiling

The Connection Between Levels
A 2-level
 tiling

A 3-level
 tiling

To display a 3-level tiling you do this:
 - display the inner triangle T0
 - display a 2-level tiling of corner triangles T1, T2, and T3

T0

T1

T2

T3

The Connection Between Levels

To display an N-level tiling you do this:
 - display the inner triangle T0
 - display an (N-1)-level tiling of triangles T1, T2, and T3

T0

T1

T2

T3

A Recursive Procedure
def Tile(T,level):

 # PreC: T a triangle

 if Level ==0:

 Draw T (yellow)

 else:

 # Let T0 be the inner triangle and

 # T1,T2,and T3 be the corner triangles

 Draw T0 (magenta)

 Tile(T1,level-1)

 Tile(T2,level-1)

 Tile(T3,level-1)

These are the recursive

procedure calls.

The procedure Tile calls itself

three times.

This is the “base case”.

A 0-level tiling just draws the

input triangle

A Note on Chopping
up a Region

into Triangles…

4

It is Important!

Step One in simulating flow around an airfoil is to
generate a triangular mesh and (say) estimate the
velocity at each little triangle using physics and math.

An
Area
Of

 Interest

Another Example: Random
Mondrians

Using Python:

Random Mondrian

Given This:

Random Mondrian

Draw This:

The Subdivide Process
Applies to a Rectangle

L

W

 Given a rectangle specified by its length, width, and center,
either randomly color it or randomly subdivide it.

(x,y)

Subdivision Starts with a
Random Dart Throw

5

This Defines 4 Smaller
Rectangles

 Repeat the process on each of the 4 smaller rectangles…

This Defines 4 Smaller
Rectangles

 We can again repeat the process on each
of the 16 smaller rectangles. Etc.

The Notion of Level

A 1-level Partitioning A 2-level Partitioning

def Mondrian(x,y,L,W,level):

 if level ==0:

 c = RandomColor())

 DrawRect(x,y,L,W,FillColor=c)

 else:

 # Subdivide into 4 smaller rectangles

 Mondrian(upper left rectangle info,level-1)

 Mondrian(upper right rectangle info,level-1)

 Mondrian(lower left rectangle info,level-1)

 Mondrian(lower right rectangle info,level-1)

Pseudocode

We look at a few details. Complete implementation online

How to Generate
Random Colors

We need some new technology to organize the
selection random colors.

We need lists whose entries are lists.

Lists with Entries that Are
Lists

An Example:

cyan = [0.0,1.0,1.0]

magenta = [1.0,0.0,1.0]

yellow = [1.0,1.0,0.0]

colorList = [cyan,magenta,yellow]

6

Pick a Color at Random

cyan = [0.0,1.0,1.0]

magenta = [1.0,0.0,1.0]

yellow = [1.0,1.0,0.0]

colorList = [cyan,magenta,yellow]

r = randi(0,2)

randomColor = colorList[r]

Package the Idea…

from simpleGraphics import *

from random import randint as randi

def RandomColor():

 “““ Returns a randomly selected

 rgb list.”””

 c = [RED,GREEN,BLUE,ORANGE,CYAN]

 i = randi(0,len(c)-1)

 return c[i]

How to Randomly Subdivide
a Rectangle

xc = randu(x-L/2,x+L/2)

yc = randu(y-W/2,y+W/2)

(x,y)
(xc,yc)

L

W

The Math Behind the
Little Rectangles

The upper right rectangle is typical:

 Length: L1 = (x+L/2)-xc

 Width: W1 = (y+W/2)-yc

 Center: (xc+L1/2,yc+W1/2)

(x,y)

(xc,yc)

L

W

The Procedure Mondrian

A couple of features
to make the design more
interesting:

(1) The dart throw that
determines the subdivision
can’t land too near the edge.
No super skinny tiles!

(2) Randomly decide
whether or not to subdivide.
This creates a nice diversity
in size.

Next Up

A Non-Graphics Example
of Recursion:

The Factorial Function

7

Recursive Evaluation of
Factorial

Recall the factorial function:

def F(n):

 x = 1

 for k in range(1,n+1):

 x = x*k

 return x

 5! = 1x2x3x4x5

Recursive Evaluation of
Factorial

Q. How would you compute 6! given that you
have computed 5! = 120 ?

 5! = 1x2x3x4x5

A. 6! = 120 x 6

Recursive Evaluation of
Factorial

 How does this work?

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

Executing F(3)

m = 3

x = F(m)

print x

 We are in the calling script

m –->

x -->

3

Executing F(3)

m = 3

x = F(m)

print

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 The function F is called with argument 3. We open up a call frame.

m –->

x -->

3

n –->

a -->

return

3

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 We encounter a function call. F is called with argument equal to 2.

m –->

x -->

3

n –->

a -->

return

3

8

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 We open up a call frame.

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

m –->

x -->

3

n –->

a -->

return

2

n –->

a -->

return

3

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 We encounter a function call. F is called with argument 1

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

m –->

x -->

3

n –->

a -->

return

2

n –->

a -->

return

3

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 We open up a call frame.

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

m –->

x -->

3

n –->

a -->

return

2

n –->

a -->

return

3

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

n –->

a -->

return

1

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 The value of 1 is “assigned” to return

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

m –->

x -->

3

n –->

a -->

return

2

n –->

a -->

return

3

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

n –->

a -->

return

1

1

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 The value is sent back to the caller.

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

m –->

x -->

3

n –->

a -->

return

2

1

n –->

a -->

return

3

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

n –->

a -->

return

1

1

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 That function call is over

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

m –->

x -->

3

n –->

a -->

return

2

1

n –->

a -->

return

3

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

n –->

a -->

return

1

1

9

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 Control now passes to this “edition” of F

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

m –->

x -->

3

n –->

a -->

return

2

1

n –->

a -->

return

3

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 Control passes to this “edition” of F. The value 2 is “assigned” to return

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

m –->

x -->

3

n –->

a -->

return

2

1

2

n –->

a -->

return

3

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 The value is returned to the caller.

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

m –->

x -->

3

n –->

a -->

return

2

1

2

n –->

a -->

return

3

2

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 The function call is over

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

m –->

x -->

3

n –->

a -->

return

2

1

2

n –->

a -->

return

3

2

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 Control now passes to this “edition” of F

m –->

x -->

3

n –->

a -->

return

3

2

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 The value 6 is “assigned” to return

m –->

x -->

3

n –->

a -->

return

3

2

6

10

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 The value is returned to the caller.

m –->

x -->

3

6

n –->

a -->

return

3

2

6

Executing F(3)

m = 3

x = F(m)

print x

def F(n):

 if n<=1:

 return 1

 else:

 a = F(n-1)

 return n*a

 This function call is over.

m –->

x -->

3

6

n –->

a -->

return

3

2

6

Executing F(3)

m = 3

x = F(m)

print x

 Control passes to the script that asked for F(3)

m –->

x -->

3

6

Executing F(3)

m = 3

x = F(m)

print x

 All Done!

m –->

x -->

3

6

 6 Output:

Overall Conclusions

Recursion is sometimes the simplest way
to organize a computation.

It would be next to impossible to do the
triangle tiling problem any other way.

On the other hand, factorial computation
is easier via for-loop iteration.

Overall Conclusions

Infinite recursion (like infinite loops) can

happen so careful reasoning is required.

Will we reach the “base case”?

Graphics examples: We will reach Level==0

Factorial: We will reach n==1

