CS1110 Spring 2016
Assignment 6: Due Friday April 22 at 6pm

You must work either on your own or with one partner. If you work with a partner, you and your partner
must first register as a group in CMS (this requires an invitation issued by one of you on CMS and the other of you
accepting it on CMS) and then submit your work as a group. As mentioned in class, we strongly recommend against
a “divide-and-conquer” /Henry-Ford-assembly-line approach: each member of a group should work on each part of
each problem to get the full educational value out of the assignment.

You may discuss background issues and general solution strategies with others outside your CMS group, but
the program(s) you submit must be the work of just you (and your partner). We assume that you are thoroughly
familiar with the discussion of academic integrity that is on the course website. Any doubts that you have about
“crossing the line” should be discussed with a member of the teaching staff before the deadline, and you should also
document such situations as comments in the header of your submission file(s).

Warning: submit an early version, and be clear on the slip day policies. Recent experiences suggest that

we:

1. ...remind you that the specific slip day policies are posted on the Assignments page of the course website.

You can spend at most two slip days on an assignment; slip days are counted on the 24-hour marks. See
http://www.cs.cornell.edu/courses/cs1110/2016sp/assignments/index.php for more details.

2. ...advise you to submit something to CMS well in advance of the deadline, since you can always overwrite

earlier submissions. For instance, even if you are planning to use two slip days, it would be wise to still submit
what you have before the usual Friday 6pm deadline or on Saturday, to avoid the possibility that you somehow
accidentally miss the (slip-day) deadline and, with nothing on CMS, get no credit for the assignment.

Topics. Classes, objects, constructors, methods, lists of Objects, sorting, dictionaries.

1 Working with Long Files and Multiple Files in Komodo Edit

You are now starting to work with longer programs and multiple files. Some tips:

e The “minus” and “plus” signs on the left “margin” of Komodo Edit allow you to temporarily hide
and re-show logical portions of code, ranging from the small scale, like the bodies of if-statements, to
entire function or class definitions.

e If you’d like to view two files at the same time, go to Komodo Edit’s “View” memﬂ and select “Split
View”. You can toggle whether the two views are arranged vertically (which most people seem to
prefer) or horizontally (Komodo Edit’s default) by using the “Rotate Split View” option in the same
menu, or, less obviously, by double-clicking on the white “margin” between the two views.

e You can comment or un-comment whole regions using Komodo Edit’s “Code” menu options “Comment
Region” and “Un-Comment Region”. Similarly options exist for indenting and un-indenting selected
portions of code.

2 The Data

Because Shakespeare’s work is in the public domain, online versions are readily available, e.g.,
http://shakespeare.mit.edu

We have downloaded thirty-seven .txt files from this site (one for each play) and placed them in a folder
called ThePlays. You will see this folder (and other things) when you download and unzip A6.zip. The
files have been tweaked a little bit to make the assignment more straightforwarcﬂ Here is an excerpt from
ROMEO AND JULIET.txt:

IMac: in the menu bar at the top of the screen; Windows: click on the three-stripe “hamburger” button (https://en.
wikipedia.org/wiki/Hamburger_button).
“Do not be alarmed or concerned that (for example) HAMLET. txt differs from your private copy of the play.

http://www.cs.cornell.edu/courses/cs1110/2016sp/assignments/index.php
http://shakespeare.mit.edu
https://en.wikipedia.org/wiki/Hamburger_button
https://en.wikipedia.org/wiki/Hamburger_button

FRIAR LAURENCE

Come, come with me, and we will make short work;
For, by your leaves, you shall not stay alone
Till holy church incorporate two in one.

Exeunt

ACT III
SCENE I. A public place.

Enter MERCUTIO, BENVOLIO, Page, and Servants
BENVOLIO

I pray thee, good Mercutio, let's retire:

The day is hot, the Capulets abroad,

And, if we meet, we shall not scape a brawl;

For now, these hot days, is the mad blood stirring.

MERCUTIO

Thou art like one of those fellows that when he
enters the confines of a tavern claps me his sword
upon the table and says 'God send me no need of
thee!' and by the operation of the second cup draws
it on the drawer, when indeed there is no need.

BENVOLIO
Am I like such a fellow?
MERCUTIO

Come, come, thou art as hot a Jack in thy mood as
any in Italy, and as soon moved to be moody, and as
soon moody to be moved.

The layout of the data is structured. Think of each line in each file as a separate string. If the string has a
non-blank at the start, then it signals either a new act, a new scene, or the name of a “speaker”. Using this
fact it is possible to “repackage” the data in a Shakespearean-text file like HAMLET. txt so that the data sits
in a more computationally-amenable “list of speeches” and a “list of scenes.” To proceed further we need to
define some handy classes.

3 The Classes Speech and Scene

Take a look at the module PlayTools.py. In it you will see that there are two class definitions and several
functions. The class Speech is used to encode an uninterrupted utterance by someone, such as

MERCUTIO

Thou art like one of those fellows that when he
enters the confines of a tavern claps me his sword
upon the table and says 'God send me no need of
thee!' and by the operation of the second cup draws
it on the drawer, when indeed there is no need.

(so in the excerpt given above, there are two speeches by Mercutio). A Speech object packages the speaker’s
name as a string and the spoken text as a list of strings. The class Scene is used to encode scene information
from line pairs like

ACT III
SCENE I. A public place.

A Scene object packages the act number as an int, the scene number as an int, and the location as a string.
Continue your browse through PlayTools.py. The functions theComedies(), theTragedies(), and
theHistories() return lists of strings that are the names of the plays. The functions List0fSpeeches and
List0fScenes can be used to assemble all the speech information and act/scene information from a given
play ﬁleﬂ
You should run the demo script ShowPlayTools.py to solidify your understanding of these important
tools because you will be using them throughout the assignment.

4 The Class Play

The module ThePlayClass.py contains a number of skeleton definitions that need completion. In the end
you will submit ThePlayClass.py to CMS.

4.1 Implement the constructor

Start by completing the constructor (the function __init__) for the class Play. Make use of the functions
ListOfSpeeches and ListOfScenes that are available for use because of the importing of PlayTools.py.

If you have your constructor working, your code will create Play objects that look like the following
schematic. (We haven’t drawn in all the arrows, but you should get the idea.)

vist
0@— e \ Speech _ |
theTitle Jihl 1l 1
/ . theSpeaker | 'First witch
theScenes [I theSpeeches D ; D
648I:| lines|®
list ! S
,,,,, list |
Ol ere shall we three meet again I

[y |
actNumber |:| 1_.Scene_ |

sceneNumber |:|

location | 'A desert place

As part of completing the constructor, note that you will need to compute the total number of lines in
the play named by the string parameter p. To do this you will have to add up the number of lines in each
speech.

4.2 Testing

We’ve provided a rough and partial test script for you called CheckConstructor.py. You won'’t be submitting
it; it’s just for your convenience.

3 Actually, there are some formatting special cases that our code doesn’t catch, since we opted for brevity over complete
coverage. Don’t spend effort on “fixing” these functions, just use them as is; but do be aware that some passages might get
omitted by these functions. More information is given in the docstring code.

Note that real-life data is generally like this — kinda messa, but hopefully still useful.

If you run CheckConstructor.py , you should get a printout of (1) a report “Constructor test test_macbeth
assertions passed”, meaning that a preliminary rough check of your constructor run for the play MACBETH
passed, and (2) a table like this that reports the number of lines in each of the tragedies:

3347 ANTONY AND CLEOPATRA
3585 CORIOLANUS

3607 HAMLET

2436 JULIUS CAESAR

3267 KING LEAR

2177 MACBETH

3388 OTHELLO

2847 ROMEO AND JULIET
2305 TIMON OF ATHENS

2344 TITUS ANDRONICUS

If our preliminary checks of your constructor fail, you will get some error messages printed out; consult
CheckConstructor.py for more details.

Of course, the correctness of your constructor implementation requires testing in additional directions.
Make sure that all the attributes are properly set up before proceeding.

4.3 If you have trouble debugging

One suggestion is to create a fake small play file — call it something like ‘TEST.txt’ — and place it in the
directory/folder ThePlays. Perhaps the file could contain just the segment of ROMEO AND JULIET Act
IIT Scene I that has been excerpted in Section [2} for that excerpt, the first speech by Mercutio is 5 lines long,
and second one is three lines long.

With this small fake play around, you can alter CheckConstructor.py to use it. For instance, you
could write a test function similar to the pre-existing function test_macbeth that creates a Play for TEST,
e.g., with a line like my_play = Play("Test"). Then use print statements to check what the lines in each
speech in my_play look like.

5 Sorting a List of Plays

Complete the module ShowSort.py so that it produces a table that reports the number of lines in each of
the 37 plays. It should be sorted so that the play with the fewest number of lines is at the top of the table
and the play with the most lines is at the bottom, e.g.,

1765 COMEDY OF ERRORS

2067 MIDSUMMERS NIGHTS DREAM
2077 TEMPEST

2147 TWO GENTLEMAN OF VERONA
2177 MACBETH

3388 OTHELLO
3396 RICHARD III
3402 CYMBELINE
3585 CORIOLANUS
3607 HAMLET

You will have to define an appropriate getter function that is needed for the sort. (Make sure to give it a
suitable docstring.) And you will have write a loop that iterates over a list of play names. To create this list
make effective use of the functions theComedies (), theTragedies() and theHistories() that are available
if you import everything from PlayTools.py. Submit ShowSort.py to CMS.

6 The Method MajorParts

If a speaker’s name is all uppercase letters, like > JULIET’, then the speaker is a major character. Otherwise,
the speaker is a minor character like ’Nurse’. Revisit the module ThePlayClass.py and take a look at the
class definition for Play. Complete the implementation of the method MajorParts:

def MajorParts(self):
""" Returns an alphabetized list of strings that
name all the major characters in this Play.

As an example, the code

P = Play('ROMEO AND JULIET')
mParts = P.MajorParts()
for s in mParts:

print s

produces

ABRAHAM
BALTHASAR
BENVOLIO
CAPULET
FRIAR JOHN
FRIAR LAURENCE
GREGORY
JULIET

LADY CAPULET
LADY MONTAGUE
MERCUTIO
MONTAGUE

PAGE

PARIS

PETER

PRINCE

ROMEO

SAMPSON
TYBALT

Here are some hints that you may find useful as you proceed to develop MajorParts. Build up a list (say L)
of major characters through repeated appending. This will involve looking at the speaker associated with
every speech in the play. If the speaker is not already in the “current” version of L, then append if they
are a major character. Otherwise, there is nothing to do because the speaker is in L already. Note, the list
returned by MajorParts should have no repeated entries. The script CheckMajorParts.py can be used to
help check your implementation.

7 The Method Freq

Continue browsing through the ThePlayClass.py and turn your attention to the method Freq that is part
of the class Play:

def Freq(self,w):
""" Returns an int that is the number of times that w
(as a word on its own) occurs in this Play. (If w is "th",
"the" doesn't add to its count.)

PreC: w is a string.
nun

By implementing this method you will be able to examine how many times Shakespeare penned a given
word over the course of his playwriting career. Your code will have to look at every line in every speech. To
process a particular line, use the function stringToWordlist that is part of GetData.py. It can be used to
break a string into a list of words. Once that is done you can count how many times w is in that list. The
module CheckFreq.py can be used to help check your implementation.

8 The Method SpeakersAndLines

Continue browsing through ThePlayClass.py and turn your attention to the method SpeakersAndLines
that is part of the class Play:

def SpeakersAndLines(self):
""" Returns a dictionary whose keys are speakers and whose
values are the total number of lines that the speaker has
in this Play."""

Implement this method and complete the module ShowSpeakersAndLines.py so that it reports the number
of speakers in each tragedy who have at least 200 lines. The output should look something like this:

ANTONY AND CLEOPATRA
407 OCTAVIUS CAESAR
344 DOMITIUS ENOBARBUS
744 MARK ANTONY
616 CLEOPATRA

CORIOLANUS
285 COMINIUS
237 BRUTUS

299 SICINIUS
263 AUFIDIUS
203 MARCIUS
566 MENENIUS
308 VOLUMNIA
611 CORIOLANUS

HAMLET
273 HORATIO
1308 HAMLET
322 LORD POLONIUS
437 KING CLAUDIUS

etc

Submit ShowSpeakersAndLines.py to CMS.

Warning: make sure that your method SpeakersAndLines actually returns a dictionary; and that your
main function in ShowSpeakersAndLines.py loops through a dictionary produced by SpeakersAndLines —
and not through the list of speeches in a Play — in order to print its output. The point of this part of the
exercise is to demonstrate your ability to work with dictionaries.

9 The Function FullScene

Run the module ShowFullScene.py and observe that it displays all the act/scene information for Two
Gentleman of Verona:

TWO GENTLEMAN OF VERONA
Act 1 Scene 1 Verona

Act 1 Scene 2 The same
Act 1 Scene 3 The same

Act 2 Scene 1 Milan

Act 2 Scene 2 Verona

Act 2 Scene 3 The same

Act 2 Scene 4 Milan

Act 2 Scene 5 The same

Act 2 Scene 6 The same

Act 2 Scene 7 Verona

Act 3 Scene 1 Milan

Act 3 Scene 2 The same

Act 4 Scene 1 The frontiers of Mantua
Act 4 Scene 2 Milan

Act 4 Scene 3 The same

Act 4 Scene 4 The same

Act 5 Scene 1 Milan

Act 5 Scene 2 The same

Act 5 Scene 3 The frontiers of Mantua
Act 5 Scene 4 Another part of the forest

By saying “The same” Shakespeare is telling us that the location of a scene is the same as the location of
the previous scene. We would like to display the same information with the locations in full format:

Act 1 Scene 1 Verona

Act 1 Scene 2 Verona

Act 1 Scene 3 Verona

Act 2 Scene 1 Milan

Act 2 Scene 2 Verona

Act 2 Scene 3 Verona

Act 2 Scene 4 Milan

Act 2 Scene 5 Milan

Act 2 Scene 6 Milan

Act 2 Scene 7 Verona

Act 3 Scene 1 Milan

Act 3 Scene 2 Milan

Act 4 Scene 1 The frontiers of Mantua
Act 4 Scene 2 Milan

Act 4 Scene 3 Milan

Act 4 Scene 4 Milan

Act 5 Scene 1 Milan

Act 5 Scene 2 Milan

Act 5 Scene 3 The frontiers of Mantua
Act 5 Scene 4 Another part of the forest

Complete ShowFullScene.py so that it displays both the original act/scene information and the full format
version. You are required to implement the function FullScene and to make effective use of it in main().
Your implementation of FullScene should be able to work for any play—not just Two Gentlemen of Verona.
Submit ShowFullScene.py to CMS.

10 CMS

Here is a summary of what you must upload to CMS:

ThePlayClass.py This will have your implementation of the constructor
and the methods MajorParts, Freq, SpeakersAndLines

ShowSort.py
ShowSpeakersAndLines.py

ShowFullScene.py This will include your implementation of the function
FullScene

All functions to be graded must be named ezactly as mentioned above/defined in the skeleton code you
have been provided, and taking exactly the number of parameters with the same meanings specified above/in

the skeleton code. Any changes in capitalization, spelling, number of parameters, etc. will cause an error in
the auto-testing code and probably result in point deductions for you.

Reminders about submission and CMS:

1.

If you meant to be grouped, verify ahead of time that CMS group invitations were issued and accepted
before submitting.

. Make sure your submitted .py files begin with header comments listing:

(a) The name of the file
(b) The name(s) and netid(s) of the person or group submitting the file
(c) The date the file was finished

If there were other people who contributed to your thought processes in developing your code, mention
them by name in header comments. (You don’t have to mention course-staff members, although it
makes sense to do so.)

Make sure all your functions have appropriate docstrings. These should include explanations of what
the parameter variables “mean” and what preconditions (constraints) are assumed on their values, and
what the user can expect as a result of calling your functions.

If you submit earlier than two hours before the submission deadline, CMS allows you to download
your files to check that they are what you think you submitted. We thus strongly suggest that you
submit a version early and do this check. (If you want to make changes, no problem: CMS allows you
to overwrite an older version by uploading a new version.)

(We have heard that the following issue has been fixed, but better to be safe than sorry...) Do not
“reload” /“refresh” the CMS assignment submission page after the submission deadline passes: this
will trigger another upload of your files, which can result in your submission being counted as late.
The safest policy is to close your browser tab/window after upload.

	Working with Long Files and Multiple Files in Komodo Edit
	The Data
	 The Classes Speech and Scene
	The Class Play
	Implement the constructor
	Testing
	If you have trouble debugging

	Sorting a List of Plays
	The Method MajorParts
	The Method Freq
	The Method SpeakersAndLines
	The Function FullScene
	CMS

