CS1110 Spring 2016

Assignment 5: Due Friday April 8 at 6pm

You must work either on your own or with one partner. If you work with a partner, you and your partner must
first register as a group in CMS (this requires an invitation issued by one of you on CMS and the other of you
accepting it on CMS) and then submit your work as a group. As mentioned in class, we strongly recommend against
a “divide-and-conquer” /Henry-Ford-assembly-line approach: each member of a group should work on each part of
each problem to get the full educational value out of the assignment.

You may discuss background issues and general solution strategies with others outside your CMS group, but the
program(s) you submit must be the work of just you (and your partner). We assume that you are thoroughly familiar
with the discussion of academic integrity that is on the course website. Any doubts that you have about “crossing
the line” should be discussed with a member of the teaching staff before the deadline, and you should also document
such situations as comments in the header of your submission file(s).

Topics. Lists of strings. Lists of numbers. List methods. Return-from-loop body. More intricate boolean/string
computations. A main function. Reading data from a text file. Before you begin, check out Lab 6 and (when
available) Lab 7 and lectures 3/17, 3/22, and 3/24.

1 Background

I’'m shopping for colleges and use Google to search for “Corenell.” The response is “Do you mean cor-
nell?” I'm texting my spouse with the message “Honey I'm Home”! but it goes out as “Money I'm Home.”
I'm checking out some sequences of nucleotides and want to know how close a match ‘AGTCGTC’ is to
‘TAGTCGT".

Each of these examples points to an underlying “nearness” problem that involves strings. The big question
that we will explore in this assignment is this: When might we regard one string as being close to another?
Or better, when might we regard one string as a “neighbor” of another?

Here are three possible definitions of string neighbors based on how Professor Fat Fingers makes mistakes
when texting:

e Two strings are neighbors if they are the same except in one position. ("abc" and "abe")

e Two strings are neighbors if they are different but we can obtain one by swapping an adjacent pair of
characters in the other. ("abc" and "acb")

e Two strings are neighbors if deleting one character from one string produces the other string. ("abc"
and "abxc")

2 Getting Set Up

Download and unzip A5.zip into a folder/directory called (for example) A5. It contains a text file called
EnglishWords.txt and a module called GetData.py (Lab 7 and the 3/24 lecture are useful here), as well as
a skeleton file CloseWords. py.

You will be submitting a revised version of CloseWords.py to which you have added functions and code
that showcases your implementation work.

3 Three Definitions of “Neighbor”

The first order of business is to develop three Boolean-valued functions each of which checks whether two
strings are neighbors or not. They correspond to the “definitions” given above.

IWhy I would text my spouse this, as opposed to speaking out loud like in the old days, is an issue we will not address here.

3.1 Off-By-One

Two non-empty strings s1 and s2 are said to be off-by-one if they have the same length and differ in exactly
one position. Here some examples:

si s2 0ff-By-One?
"read" "rexd" True
"read" "xexd" False
"read" | "readx" False
"read" "eadx" False

Ilall IIXII True

Ilall llall False

Ilall IIAII True

Implement a function offByOne(s1,s2) that takes two nonempty strings s1 and s2 and returns True if they
are off-by-one and False otherwise.

3.1.1 Optional but potentially very helpful: Ideas for how to test

If you haven’t tried this already, one way to test your function is to get into Python interactive mode, and
do:

>>> import CloseWords
>>> print CloseWords.offByOne("read", "rexd")

and similarly for all the test cases we’ve given you above, and any others you think might be good to try
out. But remember: every time you change your code in your editor, you need to exit interactive mode and
then re-enter it in order for Python to “see” your changes. Or, in Python 2, with some caveats, you can do

>>> reload(CloseWords)

after making changes.
Alternatively, you can make a testing function that loops through test cases, like what you may have
noticed appeared in the practice-prelim solution code:

def testem():
test offByOne
for answer in [["read", "rexd", True],

["read", "xexd", False],

["read", "readx", False],

["read", "eadx", Falsel,

["a","x", True],

["a", "a", False],

[uau’ uAn’ True]]:
response = offByOne(answer[0], answer[1])
right = answer[2]
if response != right:

print "problem with", answer
print "done testing off-by-one"

Then, in your Application Script, you can temporarily put in a call to testem.

For your convenience, testem has been provided in the skeleton CloseWords.py. You can modify it any
way you want, including adding tests for other functions you write later in this assignment; we won’t be
looking at testem when grading.

Finally, a really effective, if non-obvious, strategy is to think up test cases on paper and before you write
your code; try, just from reading the specification, to create test cases that cover all the “types” of inputs
you could get. If nothing else, this activity helps you figure out the scope of the problem your code needs
to solve. Also, it’s incredible hard to think about cases your code doesn’t handle once you’ve written your
program: unfortunately, “most code tends to look right”.

3.2 Off-By-Swap

Two non-empty strings s1 and s2 are said to be off-by-swap if s1 and s2 are different, but s2 can be obtained
by swapping two adjacent characters in s1. Here some examples:

si s2 0ff-By-Swap?

"read" | "raed" | True

"read" "erad" | True

"reaxd" | "read" | False

"read" "erda" | False # two swaps

"read" "erbx" | False # one swap, but other changes too
"x" "y False

"aaa" "aaa" | False # same strings

Implement a function offBySwap(s1,s2) that takes two nonempty strings s1 and s2 and returns True if
they are off-by-swap and False otherwise.

We strongly suggest you think of other test cases to try beyond those we have supplied you, and we make
no guarantees that the test cases we’ve provided cover all the possible types of inputs.

3.3 Off-By-Extra

Two non-empty strings s1 and s2 are off-by-extra if removing one character from s1 gives s2 or if removing
one character from s2 gives s1. Here are some examples:

s1 s2 0ff-By-Extra?
"abcd" "abxcd" True
"abxcd" "abcd" True
"abcda" "abcd" True
"abcd" "bcda" False
"abcd" "abcdef" False
"abcd" "abcd" False

Implement a function offByExtra(s1,s2) that takes two nonempty strings s1 and s2 and returns True if
they are off-by-extra and False otherwise.

We expect you to implement this Boolean-valued function with a helper function List0fDeleteOnes(s)
that takes a nonempty string s of letters and returns a list of all those strings that can be obtained from s
by deleting one character, e.g.,

Ilabcdll —_———> [lIdeII , Ilacdll s Ilabdll , n abcll]

Note that if w is a string and w in ListOfDeleteOnes(s) is True, then w and s are off-by-extra.
And to repeat, your implementation of offByExtra must make effective use of List0fDeleteOnes.

3.4 Testing

Thoroughly test your implementations of offByOne, offBySwap and offByExtra before proceeding. You are
free to implement additional helper functions if you wish. Make sure that they are fully specified.

4 Computing a List of Neighbor Words

In the next part of the assignment you write a pair of functions that return lists of strings. We need to
define what we mean when we say that one string is a neighbor of another:

Two strings s1 and s2 are neighbors if they are not the same
string and they are either off-by-one, off-by-extra, or off-by-swap.

Implement the following two functions so that they perform as specified:

def ListOfNeighbors(s,L):
""" Returns a list of all entries in L that are neighbors of s.

PreC: s is a nonempty string and L is a list of nonempty strings.

def ListOfNeighbors2(s,L):
""" Returns a sorted list of all entries in L that are
neighbors of neighbors of s. The returned list has no
duplicate entries.

PreC: s is a nonempty string and L is a list of nonempty strings.

The Python functions list and set can be used to remove duplicate entries from a list:

>>> x = [20,20,10,10,10,40,40,30,30,30,30]
>>> x

[20, 20, 10, 10, 10, 40, 40, 30, 30, 30, 30]
>>> y = list(set(x))

>>>y

[40, 10, 20, 30]

>>>

Warnings: your code should not alter the input list L. Note: it is legal for L to be the empty list.

4.1 Testing/debugging

One way to debug ListO0fNeighbors and List0fNeighbors?2 is to temporarily use a “dictionary” that is
smaller than EnglishWords.txt. You can either do this “by hand”, e.g.,

smalllList = ["abc", "abcd", "abcde"]
or by pulling out a small slice from the list L above, e.g.,
smalllList = L[1000:1050]

Another very small test case is that, for the full dictionary EnglishWords.txt, the only neighbor of
“transform” is “transforms”, and the only neighbor of its neighbors is “transform” again. An additional
example is “largest”, which has two neighbors, “larges”? and “largess”; there are 11 neighbors of neighbors.

In any case, make sure your implementations are correct before proceeding.

5 Scrabble

In the game of Scrabble there are 98 letter tiles. Each of the 26 letters has a certain value and there are a
specific number of each letter tile. These strings and lists® capture it all:

Letters = string.ascii_uppercase

#ABCD EFGHIJKLMNOP QRSTUVWXY Z
Supply= [9,2,2,4,12,2,3,2,9,1,1,4,2,6,8,2, 1,6,4,6,4,2,2,1,2, 1]
vValue = [1,3,3,2, 1,4,2,4,1,8,5,1,3,1,1,3,10,1,1,1,1,4,4,8,4,10]

2As in someone at a pizzeria saying, “I’ll buy two of the larges, please”.

3Thought question: can you figure out why we made Supply and Value to be lists, not strings? Would it have been better
or worse to make Letters a list instead of a string?

For example, there are 4 “D” tiles and each one is worth 2 points. Note that

i = Letters.find(’D’) # i will have value 3
numberOfLetter = Supply[i]
valueOfLetter Value[i]

assigns 4 to numberOfLetter and 2 to valueOfLetter. The Scrabble score of a string of uppercase letters is
the sum of the individual character values, e.g.,

"ZOOLOGY" ----—- > 10+1+1+1+1+2+4=20.

But there’s one important exception: the Scrabble score of a string of letters that requires more of some
letter tile than is available is 0. An example is "ZYZZYVA": two too many “Z”s.

Implement a function ScrabbleScore(s) that takes a string of letters (of any case or mixed case),
converts all the characters to uppercase, and then returns the Scrabble score of the result (as an int). We've
given you some skeleton code for ScrabbleScore to save you some typing.

6 The Final Application Script and main function

After all your functions are working, change the application script so that all it does is call a function
called main (), which takes no arguments. This function must be based on the following skeleton and, when
completed, obey the desiderata given after the skeleton.

def main():
"""Showcases the code in this module."""

Read in the list of English words...
L = fileToStringList(’EnglishWords.txt’)

Until the user complies, keep prompting for a string of lowercase letters.
while True:
s = raw_input (’Enter a nonempty string of lowercase letters: ’)

Print all the neighbors of s and their Scrabble scores...
print ’\nNeighbors...\n’

Print all the neighbors of the neighbors of s and their Scrabble scores...
print ’\nNeighbors of the Neighbors...\n’

The
while loop body should break as soon as the string s is made up entirely of lowercase letters; use a break
statement appropriately to accomplish this. It is not necessary to pretty print the output, i.e., a statement
like this:

print theString, theScrabbleScore

is an absolutely fine way to display a neighbor string and its Scrabble score.
In checking whether letters are lowercase, it’s convenient to consult the string string.ascii_lowercase
(as opposed to typing in ’abcdefghijklmnopgrstuvwxyz’, and assuming you’ve imported module string).

7 CMS

One file should be uploaded to CMS: CloseWords.py. It must contain functions named ezactly the following,
and taking exactly the number of parameters described in the text above. (Any changes in capitalization,
spelling, number of parameters, etc. will cause an error in the auto-testing code and result in point deductions
for you, because we’re going to call the functions by exactly the names we’ve listed below and with exactly
the number of parameters described above. Of course, you can name the parameters anything you want.?)

offByOne
offBySwap
offByExtra
ListOfDeletelnes
ListOfNeighbors
ListOfNeighbors2
ScrabbleScore
main

Your CloseWords.py may also include any (documented-via-docstrings) helper functions that are part of
your overall implementation. And, your “final” Application script should contain only a call to main.

Reminders about submission and CMS:
1. Make sure your submitted .py files begin with header comments listing:

(a) The name of the file
(b) The name(s) and netid(s) of the person or group submitting the file
(c¢) The date the file was finished

If there were other people who contributed to your thought processes in developing your code, mention
them by name in header comments. (You don’t have to mention course-staff members, although it
makes sense to do so.)

2. Make sure all your functions have appropriate docstrings. These should include explanations of what
the parameter variables “mean” and what preconditions (constraints) are assumed on their values, and
what the user can expect as a result of calling your functions.

3. Do not “reload” /“refresh” the CMS assignment submission page after the submission deadline passes:
this will trigger another upload of your files, which can result in your submission being counted as late.
The safest policy is to close your browser tab/window after upload.

4. If you submit earlier than two hours before the submission deadline, CMS allows you to download
your files to check that they are what you think you submitted. We thus strongly suggest that you
submit a version early and do this check. (If you want to make changes, no problem: CMS allows you
to overwrite an older version by uploading a new version.)

4Within reason. We reserve the right to deduct style points for parameter names that are inappropriate, e.g., offensive.
Generally, one should choose parameter names indicative of the information they are meant to store.

