CS1110 Spring 2016
Assignment 3: Due Friday Mar 4 at 6pm on CMS

You must work either on your own or with one partner. If you work with a partner, you and your partner must
first register as a group in CMS (this requires an invitation issued by one of you on CMS and the other of you
accepting it on CMS) and then submit your work as a group.

You may discuss background issues and general solution strategies with others, but the programs you submit
must be the work of just you (and your partner). We assume that you are thoroughly familiar with the discussion
of academic integrity that is on the course website. Any doubts that you have about “crossing the line” should be
discussed with a member of the teaching staff before the deadline.

Topics. Using the string methods count and find. Boolean-valued functions. Helper functions. Iterating
through a string with for. Iteration in graphics using for. The assignment is based on lectures through February 25
and Lab 4.

1 Roman Numerals

Here are some Roman numeral strings and their associated values:

I’ 1 1T’ 2 ’MCMLXXXIV’ 1984
' 5 PIV? 4 ’>MMMDCCCLXXXVIII’ 3888
’X? 10 ’IX? 9 ’CDIX’ 409
’L? 50 *XL’ 40 ’MMCXL’ 2140
’C’ 100 ’XC? 90 ’CI’ 101
’D’ 500 ’CD’ 400 ’MLI’ 1051
M’ 1000 ’CM? 900 >CCCXL’ 340

In this problem you implement various Boolean-valued functions that can be used to determine if a given
string is a valid Roman numeral string. There are quite a few properties that need to be satified, e.g., there
can be at most three X’s, none of the characters in LXVI can come before an M, there can be at most one
CM, etc. You will also implement a function that computes the value of a valid Roman numeral string. This
is interesting because sometimes C, X, and I indicate negative values. For example, the value of CMXCIX is
—100 4 1000 — 104+ 100 — 1 4+ 10 = 999.

1.1 Getting Set Up

Start by downloading the module Roman. py from the course website. You will notice that it contains seven
functions:

Not Implemented: ~A11CharsOK(R) A11FreqsOK(R) SingleOK(c,s,R) DoubleOK(s,R) Value(R)
Implemented: Al1DoublesOK(R) AllSinglesOK(R)

As you proceed with the problem you can use the Application Script (suitably modified) to test your imple-
mentations.

1.2 Legal Characters

We define a string to be character-legal if it is made up of the characters M, D, C, L, X, V, and I. Implement a
function A11CharsOK(R) that takes a non-zero-length string! R as input and returns True if R is a character-
legal string and returns False if it is not. Thus, the value of A11CharsOK(’>IXIIIDDCM’) is True and the
value of A11Chars0K(’3X’) is False. Hint. Count the number of “good” characters in R and then compare
that integer to len(R).

Make sure your implementation of A11CharsOK includes an appropriate doc string specification.

1Your function should assume the length of its input is at least one; don’t put in a test for the length being zero.



1.3 Frequency

A string is frequency-legal if it satisfies each of these rules:

F1. It has at most three M’s.
F2. It has at most three C’s.
F3. It has at most three X’s.
F4. It has at most three I’s.
F5. It has at most one D.
F6. It has at most one L.
F7. It has at most one V.

Thus, *MM1984XVI’ and ’IXIILDMVX’ are frequency-legal strings while >XXXX’ and ’D3D’ are not2.
Implement a function A11FreqsOK(R) that takes a non-zero-length string® R and returns True if it is
frequency-legal and returns False if it is not.
Hint: you may find yourself using a conjunction of many Boolean expressions that is too long to fit in
one line. To handle this, use parentheses to allow you to continue onto separate lines, like this:

return (number_buffalo > 1

and deer == "playing"
and antelope_playing
and skies != "cloudy")

Make sure your implementation of A11FreqsOK includes an appropriate doc string specification.

1.4 Single Legal

It turns out that, due to certain ordering rules, MCMXIV is is a valid Roman numeral but CIMVM is not. That
is because an M cannot be preceded by an I or a V. The next set of rules explains “who can come before
whom” in a Roman numeral. We say that a string R is single-legal if each of the following properties are
satisfied:

S1. Every character in 'DLXVI’ that occurs in R must come after the last occurrence of M’ in R.
S2. Every character in 'LXVI’ that occurs in R must come after the last occurrence of D’ in R.
S3. Every character in "LVI’ that occurs in R must come after the last occurrence of >C’ in R .
S4. Every character in VI’ that occurs in R must come after the last occurrence of L’ in R.

S5. Every character in 'V’ that occurs in R must come after the last occurrence of X’ in R.

Noting the similarities in each of these conditions, it would be very handy to have available a function like
this:

def SingleOK(c,s,R):
""" Returns True if c is not in R,
OR, if c is in R and not preceded by any character in s.
Otherwise, False is returned.

PreC: c is a character, s is a nonempty string, R is a nonempty string,

and ¢ is not in s.
nnn

Indeed, if we had such a function then checking these rules for compliance would be very easy:

2You may know that IIII is sometimes used for “4” on clock faces. Pay no attention to this. We are the Roman numeral
authorities in this problem and that’s final!
3Your function should assume the length of its input is at least one; don’t put in a test for the length being zero.



S1 s true if and only if Single0K(’M’,’DLXVI’,R) is True
S2 s true if and only if Single0K(’D’,’LXVI’,R) is True
S3 is true if and only if SingleOK(’C’,’LVI’,R) is True
S4 s true if and only if Single0K(’L’,’VI’,R) is True
S5 s true if and only if Single0K(’X’,’V’,R) is True

Note in the given module Roman. py that we have implemented a function A11SinglesOK(R) that determines
whether or not the input string R is single-legal. For this pre-programmed function to work, you will have
to implement SingleOK. We now offer some hints on how you might approach this Boolean challenge.

The string methods find and rfind can be used to look for first and last occurrences. We covered find
in lecture:

If s1 and s2 are strings, then si1.find(s2) is an int whose value is the index of the first
occurrence of s2 in s1. If there is no first occurrence, then the returned value is -1.

The string method rfind is similar:

If s1 and s2 are strings, then si.rfind(s2) is an int whose value is the index of the last
occurrence of s2 in s1. If there is no last occurrence, then the returned value is -1.

Just to be clear, here is an example:

>>> s = ’axyzbxyzcxyzd’

>>> s.find(’xyz’)

1

>>> s.rfind(’xyz’)

9

Returning to the implementation of Single0OK, if ¢ is not in R then there is very little to do. Just return
the value True. If c is in R, then you will need a loop to oversee the checking of each character in s. You
have to make sure that no character in s that also appears in R ever comes before the last occurrence of the
character c in R.

Here are some clarifying examples:

Single0K(’C’,’LVI’,’MDV’) is True because there is no ’C’ in MDV’.
Single0K(’C’,’LVI’, ’MCCV’) is True because ’V’ does not come before the last *C’.
Single0OK(’C’,’LVI’, ’MCVCV’) is False because there is a >V’ before the last >C’.

Make sure your implementation of SingleOK includes a doc string specification.

1.5 Double legal
We say that a string R is double legal if each of the following properties are satisfied:

D1 The string ’CM’ can occur at most once in R.
If °CM’ does occur in R, then the >C’ in >CM’ is the first >C’ in R.

D2 The string CD’ can occur at most once in R.
If °CD’ does occur in R, then the >C? in *CD’ is the first C’ in R.

D3 The string *XC’ can occur at most once in R.
If °XC’ does occur in R, then the *X’ in ’XC’ is the first *X’ in R.

D4 The string XL’ can occur at most once in R.
If XL’ does occur in R, then the X’ in ’XL’is the first X’ in R.

D5 The string >IX’ can occur at most once in R.
If °IX’ does occur in R, then the >I’ in >IX’ is the first I’ in R.

D6 The string IV’ can occur at most once in R.
If IV’ does occur in R, then the I’ in IV’ is the first I’ in R.



To make sure you understand these rules, consider D1.

D1 holds if R = *MCMXC’ because there is only one occurrence of >CM’ and the ’C’ in
’CM’ is the first °C’ in the string.

D1 holds if R = *MCX’ because there is no occurrence of CM’.
D1 does not hold if R = *MCXCM’ because the >C’ in CM’ is not the first occurrence of a ’C’

Given the similarity of D1-D6, it would be very handy to have available the following function:

def DoubleOK(s,R):
""" Returns True if s is not in R or if s occurs once in R
and the first occurrence of s[0] is the first occurrence of s.
Otherwise the value False is returned.

PreC: s is a length-2 string and R is a nonempty string.
nnn

Indeed, we could easily check that D1-D6 hold by using DoubleOK:

D1 is true if and only if Double0OK(’CD’,R) is True
D2 is true if and only if DoubleOK(’CM’,R) is True
D3 is true if and only if DoubleOK(’XL’,R) is True
D4 is true if and only if DoubleOK(’XC’,R) is True
D5 is true if and only if Double0OK(’IV’,R) is True
D6 is true if and only if DoubleOK(’IX’,R) is True

The function A11DoublesOK given in Roman. py checks to see if a given string is double-legal by using Double0OK
in this way. For it to work, you will have to implement DoubleOK.
Make sure your implementation includes a doc string specification.

1.6 Computing the Value

A string R is a Roman numeral string if it is character-legal, frequency-legal, single-legal, and double-legal.
Each character in a Roman numeral string has a numerical value: *M’ is 1000, °D’ is 500, °C’ is 100, *L’ is
50, °X? is 10, °V? is 5, an I’ is 1.

The value of R is obtained by first adding up the values associated with each character to obtain the
preliminary value, e.g.,

’MCMLXXXIV’ ----> 1000 + 100 + 1000 + 50 + 10 + 10 + 10 + 1 + 5 = 2186

This results in an “overcount” because the value of °C’ in >CM’ is -100 and the value of ’I’ in IV is -1. To
correct for this we need to make an adjustment to the preliminary value:

’MCMLXXXIV’ ----> 2186 - 200 - 2 = 1984

In general, adjustments to the preliminary value have to be made because:

If °CM’ occurs then this ’C’ is really worth -100.
If °CD’ occurs then this ’C? is really worth -100.
If °XC’ occurs then this X’ is really worth -10.
If XL’ occurs then this ’X’ is really worth -10.
If IX’ occurs then this *I’ is really worth -1.
If IV’ occurs then this *I’ is really worth -1.

Implement a function Value(R) that takes a Roman numeral string? and returns an int that is its value.

4You don’t have to check whether the input is a valid Roman numeral string, so don’t put in a test for this.



Note that if you have long sequences of additions that make some lines very long, you can use the same
trick as mentioned above: starting an expression with a left parenthesis allows Python to understand that
you are continuing on to another line until the the corresponding right parenthesis is encountered.

Make sure your implementation includes a doc string specification.

Submit your finished version of the module Roman . py to CMS. It should include implementations of these
functions:

Al1CharsOK
Al1FreqsOK
SingleOK
Al11SinglesOK
DoubleOK
AllDoublesOK
Value

BTW. Even after all this work our Roman numeral system isn’t perfect. By our definitions, >IVII’ is a
legal Roman numeral string and its valueis 1+5+1+1—2=6.

2 Rings and Spirals

In this problem you write a procedure that can draw a ring like this

This will involve a for-loop that oversees the drawing of lots of line segments. (Note that SimpleGraphics
has a procedure for drawing line segments.) Each line segment has its endpoints on a given circle. The “end”
of one line segment marks the beginning of the next line segment. We will call these line segments spokes.

You will also write a procedure that draws a sequence of nested rings thereby obtaining what we will call
a spiral, e.g.,

This will also involve a loop. Each time through the loop body a new ring will be added to the window.



2.1 Getting Set Up

Download the module Spiral.py from the course website. It is set up for you to develop the two procedures
that are required for this part of the assignment.
Put (a copy of) the by-this-time-familiar file SimpleGraphics.py in the same directory.

2.2 Drawing a Ring

The geometry of a ring is defined by r (the radius), n (the number of spokes), and « (the spoke angle in
degrees). The endpoints of the spokes are systematically located on the circle 22 + y? = r2. In particular,
for k =0,1,2,...,n — 1, the endpoints of spoke k are

mka ) rka m(k+ 1 . m(k+ 1o
rcos | —— | ,rsin [ —— and rcos | ———— ) ,rsin | ———— | | .
180 180 180 180

Implement a procedure
DrawRing(n,r,alpha,cl,c2)

that draws a radius-r ring made up of n spokes. The parameters c1 and c2 should be rgb lists. The -
indexed spokes should have color c1 and the -indexed spokes should have color c¢2. (To be clear, the
first spoke has index 0, . ) The parameter n is a positive int, the parameter alpha
is a positive int, and the parameter r is a positive float.

A suggestion: you can see a lot of terms in common in the endpoint recipes above. Why not store
common values in a variable once, instead of computing the same thing more than once?

Make sure you fully specify DrawRing. You are not allowed to use lists in this problem. Remember that
DrawRing is a procedure—it does not return any values. Your implementation of DrawRing needs to work
before you proceed to the next part of the problem.

2.3 Drawing a Spiral

A spiral is a sequence of rings. Here are examples of a 1-ring, 2-ring, and 3-ring spiral:

n=256 p= 1 alpha= 87 n=256 p= 2 alpha= 87 n=256 p= 3 alpha= 87

Spiral geometry is defined by a positive integer p (the number of rings), an integer n that is a power of two
(the number of spokes in the outermost ring), a positive number r (the radius of the outermost ring), and
a positive integer a (the spoke angle for every ring). The radii of the inner rings and the number of spokes
that they have are defined as follows:

If p is the radius of a given ring in the spiral, then pcos(ma/360) is the radius of its inner ring
neighbor.

If m is the number of spokes in a given ring in the spiral, then its inner ring neighbor has m/2
spokes.

Implement a procedure

DrawSpiral(n,r,alpha,cl,c2,p)



that draws a spiral. The parameter n is a positive int and a power of two. It specifies the number of
spokes in the outermost ring. The parameter r is a positive float that specifies the radius of the outermost
ring. The parameter alpha is a positive int that specifies the spoke angle of every ring. The parameters
cl and c2 should be rgb lists. Every eddeven-indexed spoke in the spiral should have color c1 and every
evenodd-indexed spoke in the spiral should have color ¢2. (The first spoke has index 0 and should have color
cl. ) The parameter p is a positive int that specifies the number of rings in the spiral.

Submit your finished version of Spiral.py to CMS. It should include your implementations of DrawRing
and DrawSpiral. Make sure that both are fully specified.

Here are some interesting examples upon which you can test your implementation:

p= 7 alpha =147 p= 7 alpha=135

3 Submission checklist and CMS notes

1. Make sure your submitted .py files begin with the header comments listing:

(a) The name of the file
(b) The name(s) and netid(s) of the person or group submitting the file
(¢) The date the file was finished

If there were other people who contributed to your thought processes in developing your code, it is a
courtesy to mention them as well.

2. We strongly encourage you to use print statements to test and debug your code, but remove such print
statements from your code before uploading to CMS.

3. Do not hit “reload” on the CMS assignment submission page after the submission deadline passes: this
will trigger another upload of your files, which can result in your submission being counted as late.

4. Tf you submit earlier than two hours before the submission deadline, CMS allows you to download
your files to check that they are what you think you submitted. We thus strongly suggest that you
submit a version early and do this check. (If you want to make changes, no problem: CMS allows you
to overwrite an older version by uploading a new version.)



