Lab 2: 2.1

a = input ('Enter the first stick"s length (assumed positive): ')
b = input ('Enter the second stick"s length (assumed positive): ")
c = input ('Enter the third stick"s length (assumed positive): ')

If a>btc or b>atc or c > atb:

print 'Cannot be arranged to make a triangle!'’
else:

print 'Can be arranged to make a triangle!'
if a<=b+c and b <= at+tc and c<=a+tb:

print 'Can be arranged to make a triangle!'’

else:
print 'Cannot be arranged to make a triangle!'

Lab 2: 2.2

s = raw input ('Enter a length-3 string: ')

if s[0]==s[1l] or s[0]==s[2] or s[l]==s[2]:

print 'There is a repeat'

else:
print 'All different'

if s[0] !'= s[l] and s[0] !=s[2] and s[l]!'=s[2]:
print 'All different'

else:

print 'There is a repeat'

Lab 2: 2.3

if (1<=x<=2) and (1<=y<=2):

print 'A'
elif (x<1) or (x>2):
print 'B'
elif (y<1l) or (y>2):
print 'C'
else:
print 'D'
X=1.5, y=1.5 prints A
X = 0, y = anything prints B
X=1.5, y=3 prints C

No choice for x and y prints D. That is because if the if condition is
False then one of the elsif conditions have to be true. An instructive

typo

Lab 3: 2 (7)

X = float (x)
1f x==0:
return 0.0
L =x
L= (L + x/L)/2

etc

Lab 3: 3.1

DemoGraphics.py
""" Draws a design with squares and a design
with rings.™""

from simpleGraphics import *

First Figure

MakeWindow (6 ,bgcolor=DARKGRAY, labels=False)
DrawRect (0,0, 6, 6,color=CYAN, stroke=5, rotate=0)
Add more squares...

DrawRect (0,0, 6,6, color=0RANGE, stroke=5, rotate=15)
DrawRect (0,0, 6, 6,color=PURPLE, stroke=5, rotate=30)
DrawRect (0,0, 6, 6,color=PINK, stroke=5, rotate=45)

14 ’ 14

Second Figure

MakeWindow (10,bgcol or=DARKGRAY, labels=False)
Rings

DrawDisk (0,1,2,stroke=10)

Add more rings...

DrawDisk (5,1,2,stroke=10)

(5,
DrawDisk (-5,1,2, stroke=10)
DrawDisk (2.5,-1, 2, stroke=10)
DrawDisk (-2.5,-1,2, stroke=10)

ShowWindow ()

def DrawTurkey(X, Y,W):

""" Draws the Turkish Flag. W is the vertical dimension
The center of the large red rectangle is at (x,Vy).

Precondition: x,y, and W are numbers and W>0.
W = float (W)

Important measurements

1.5*W

= W/2

=W/2

=W/1l6

= 2*W/5

= W/3

= W/4

= L/30;

It is not quite red...

= [.89,.039,.09]
DrawRect(x,y,L,W,color=R, stroke=0)

0w 2 EHOQW
|

Draw the white rectangle on the edge
DrawRect (x-L/2-M/2,y,M, W, color=WHITE, stroke=0)

Draw the white disk
DrawDisk(x-L/2+A,vy,B/2,color=WHITE, stroke=0)

Take a "bite"out of the white disk by drawing a well placed red disk
DrawDisk(x-L/2+A+C,y,D/2,color=R,stroke=0)

Draw the tilted star
DrawStar(x-L/2+A+C-D/2+E+F/2,y,F/2,color=WHITE,rotate=18, stroke=0)

Lab 4: 4.1

Application Script

"""Find the minimum of dist(t) where t is an
integer that satisfies L<=t<=R."""

L = input ('Enter initial time (integer): ')
R = input ('Enter final time (integer): ')

At any stage of the search, d min is the smallest value of dis(t)
found thus far and t min is the time associated with that minimum.
d max = dist (L)
£ max = L
t in range (L+1,R+1):
d current = dist(t)
if d current > d max:
A new minimum has been found.
d max = d current
t max = t
print t max,d max

Lab 4: 4.2

Application Script

1f

~name == ! main e

 "nNThe number of bad days"""

L = input ('Enter initial time (integer):

R = 1input ('Enter final time (integer):

d past = dist (L)
badCount = 0
for t 1n range (L+1,R+1):
d current = dist (t)
1f d current > d past:
badCount +=1
d past = d current
print badCount

")

")

Lab 4: 5 (First graphic)

for k in range(n):
Draw the kth row
if k%2==0 and k>=1:
DrawRow (x0,y,s,k,cl,c2)
elif k>=1:
DrawRow (x0,y,s,k,c2,cl)

The next row is up s units

y = yts

Lab 4: 5 (Second graphic)

for k in range(n):
Draw the kth row
if k%2==0:
DrawRow (x0,y,s,n-k,cl,c2)
else:
DrawRow (x0,y,s,n-k,c2,cl)

The next row is up s units

y = yts

Lab 4: 5 (Third graphic)

for k in range(n):
Draw the kth row
if k%2==0:
DrawRow (x0,y,s,n-k,cl,cl)
else:
DrawRow (x0,y,s,n-k,c2,cl)

The next row is up s units

y = yts

Lab 4: 6 (First Graphic)

Draw x and y axes

n =8

MakeWindow (n,bgcolor=PINK, labels=True)
DrawLineSeg(-n,0,2*n,0,linecolor=BLACK)
DrawLineSeg(0,-n,2*n, 90, linecolor=BLACK)

Lab 4: 6 (Second Graphic)

Draw a pizza with 4 toppings: CYAN, PINK, PURPLE, YELLOW
Proceed by drawing 360 colored ~ "spokes''
n =14
MakeWindow (n,bgcolor=BLACK)
for k in range (0, 360) :
if k<=90:
DrawLineSeg(0,0,n,k,linecolor=CYAN)
elif k<=180:
DrawLineSeg(0,0,n,k,linecolor=PINK)
elif k<=270:
DrawLineSeg(0,0,n,k,linecolor=PURPLE)
else:
DrawLineSeg(0,0,n,k,linecolor=YELLOW)

Lab 4: 6 (Third Graphic)

A Rhombus is a quadrilateral with four equal sides.
In a Rhombus, opposite angles are equal

n =28

MakeWindow (n,bgcolor=WHITE, labels=True)

L =7
theta = 55
x0 = -4

y0 = -2

Here are two of the sides
DrawLineSeg(x0,y0,L,0,linecolor=BLACK)
DrawLineSeg(x0,y0,L, theta, l1inecolor=BLACK)

The vertex opposite (x0,y0) is (x1,yl) where
x1 = x0+L+L*math.cos(theta*math.pi/180)

yl = yO+L*math.sin(theta*math.pi/180)

Here are the other two sides
DrawLineSeg(x1l,yl,L,180,1linecolor=BLACK)
DrawLineSeg(xl,yl,L,180+theta, linecolor=BLACK)

Lab 5: 2.2 No cut-off
Question

r= .5
MakeWindow (n,bgcolor=BLACK, labels=True)
for k in range (500) :

Throw the k-th paint ball

x = randu(-n+r,n-r)

y = randu(-n+r,n-r)

etc

Lab 5: 2.2 Probability
Question

rc = randi (1, 6)
if rc==1 or rc==2 or rc==3:
c = MAGENTA
elif rc==4 or rc==5:
c = CYAN
else:
c = BLUE

DrawDisk (x,y,r,color=c)

Lab 5: 3.1

for t in range(L+1l,R+1):
d current = dist(t)
if d current < d min:
A new minimum has been found.
d min = d current
t min = t
t = L+l
while t<R+1:
d current = dist(t)
if d current < d min:
A new minimum has been found.
d min = d_current
t min = t
t+=1

Lab B: 3.2 First Part

n = input('Enter a positive integer: ')
m = n
steps=0
mMax = m
while m>1:
if m%2 ==
m is even
m = m/2

m is odd
m = 3*m+1l
steps+=1
print steps,m
if m>mMax:
mMax = m
print mMax

Lab 5: 3.2 Second part

n = input('Enter a positive integer: ')

m=n
steps=0
mMax = m
while m>1 and steps<100:
if m32 ==
m is even
m = m/2
else:
m is odd
m = 3*m+1
steps+=1

print steps,m

Lab 5: 4

L is even and x is closer to it than R..
Bl = (L%2==0) and (x-L < R-Xx)

R is even and x is closer to it than L
B2 = (R%2==1) and (R-x < x-L)

return Bl or B2

Lab 6: 2.3

while True:

N = raw input('Enter a nonnegative integer:

try:
Convert the input string to an int.
N = int(N)
Valid input. Terminate the loop.
if N>O0:
break

except ValueError:
Invalid input. Inform the user and the
iteration continues.

print 'N must have type int and N > 0

")

Lab 6: 4.2.

x.sort ()
m = n/2

return x[m]

x.sort ()

Return x[lenx(x)-10:]

Lab 6: 4.3.(a,b)

B QWP X B
I

o Q o p

1000000
randlist (0,1,N)
x[:N-1]

= x[1:]

Add (A, B)
n — C.count(1l)

randlist (1,6,10000)

= randlist(1,6,10000)
= randlist(1,6,10000)
= Add(A,Add(B,C))

Prob = D.count (7) /10000.

Lab 7: 2(d)

b

[]

for s

Bl
B2
B3
if

in a:
= s.count(s[0])==
= s.count(s[l])==
= s.count(s[2])==
Bl and B2 and B3:
b.apppend(s)

Lab 7: 3(b)

for k in range (28):
dk = sqrt((x[k]-300)**2+(y[k]-200) **2)
if dk<=400:
print C[k]

Lab 7: 5(a)(b)

Any list a for which a[2] is the smallest value in
af[2:]

a = [10,20,30,90,100]

def SelectionSort(a):
n = len(a)

b = list(a)
for k in range(n):
Select (b,k)

b[O0: (k+1)] is sorted
return b

Lab 8: 4(a)(b)

3**L,

ShowTriPartition([-5,5,5]1,[-5,-5,5], 3)
ShowTriPartition([-5,5,-5],[-5,5,5], 3)

Lab 9: 2.2

count = 0
For k in range (100):
D= RandomDisk (10)
ShowDisk (D)
d = Dist (Point(0,0) ,D)
if d<=5:
count+=1

Lab 9: 2.3

L =
for

]

in range (500):

= RandomDisk (10)

.append (D)

in L:

= D.center

= D.radius

if abs(C.x)+r<=10 and abs(C.y)+r<=10:
ShowDisk (D)

For

R QOB O ~R —

Lab 9: 2.4

L = []
for k in range (50):
D = RandomDisk (10)
L.append (D)
for k in range (50:
D = L[k]
if outsideAll (D,L[:k]+L[k+1:]):
ShowDisk (D)

Lab 9: 2.5

n = 10
L = []
TotalA = 0
While TotalA < 2*n**2:
D = RandomDisk (n)
if outsideAll (D,L):
L. append (D)
TotalA += D.area()
ShowDisk (D)

Lab 9: 4(a)(b)(c) -Corrected

k=0
for 4 in D1:
if d in D2:
k+=1

k=0
for d in D1:

if 4 not in D2:

k+=1

For d in D1
if d not in D1

k+=1

Versions

k=0
for d in D1:
if d in D2 and D1[d]==D2[d]
k+=1

Lab 9: 5(a)(b)(c}(d)

(a)All the words that occur 100 or more times

(b) The total number of words in the sonnet colletion
(c) The number of words that occur 100 or more times
(d) Prints all the words that have length 10 or greater

Lab 9: 4(a)(b)(c) -Corrected

k=0
for 4 in D1:
if d in D2:
k+=1

k=0
for d in D1:

if 4 not in D2:

k+=1

For d in D1
if d not in D1

k+=1

Versions

k=0
for d in D1:
if d in D2 and D1[d]==D2[d]
k+=1

