Binary Search

- Look for value \(v \) in **sorted** segment \(b[h..k] \)

 pre: \(b \) ?
 post: \(b < v \) \(i \) ? \(j \) ? \(k \)

 inv: \(b < v \) ? \(i \) ? \(j \) ? \(k \)

 New statement of the invariant guarantees that we get leftmost position of \(v \) if found

 * if \(v \) is 3, set \(i \) to 0
 * if \(v \) is 4, set \(i \) to 5
 * if \(v \) is 5, set \(i \) to 7
 * if \(v \) is 8, set \(i \) to 10

Example \(b \)

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

Looking at \(b[i] \) gives linear search from left.
Looking at \(b[j-1] \) gives linear search from right.
Looking at middle: \(b[(i+j)/2] \) gives binary search.

Flag of Mauritius

\[
\begin{array}{cccccccccc}
<0, o & <0, e & ? & \approx & t & \approx & c & \approx & k \\
\end{array}
\]

Need two swaps for two spaces

BUT NOT ALWAYS!

Have to check if second swap is okay

Sorting: Arranging in Ascending Order

pre: \(b \) ? \(n \)
post: \(b \) ? \(n \)

Insertion Sort

\[
\begin{array}{cccccccccc}
i = 0 & 0 & \text{sorted} & ? \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
i = 0 & 0 & 1 & 2 & 4 & 4 & 6 & 6 & 7 & 8 & 9 \\
\end{array}
\]

Insertion Sort: Moving into Position

\[
\begin{array}{cccccccccc}
i = 0 & 0 & \text{sorted} & ? \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
i = 0 & 0 & 1 & 2 & 4 & 4 & 6 & 6 & 7 & 8 & 9 \\
\end{array}
\]

Insertion Sort: Performance

\[
\begin{array}{cccccccccc}
\text{Total Swaps: } 0 + 1 + 2 + 3 + \ldots (n-1) = (n-1)n/2 \\
\end{array}
\]
Algorithm “Complexity”

- **Given:** a list of length n and a problem to solve
- **Complexity:** *rough* number of steps to solve worst case
- Suppose we can compute 1000 operations a second:

<table>
<thead>
<tr>
<th>Complexity</th>
<th>n=10</th>
<th>n=100</th>
<th>n=1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0.01 s</td>
<td>0.1 s</td>
<td>1 s</td>
</tr>
<tr>
<td>n log n</td>
<td>0.016 s</td>
<td>0.32 s</td>
<td>4.79 s</td>
</tr>
<tr>
<td>n²</td>
<td>0.1 s</td>
<td>10 s</td>
<td>167 m</td>
</tr>
<tr>
<td>n³</td>
<td>1 s</td>
<td>167 m</td>
<td>11.6 d</td>
</tr>
<tr>
<td>2ⁿ</td>
<td>1 s</td>
<td>4x10¹⁰ y</td>
<td>3x10³⁸⁹ y</td>
</tr>
</tbody>
</table>

Sorting: Changing the Invariant

Selection Sort:

- **Inv:** sorted, ≤ b[0..i-1] ≥ b[i..n-1]
- **Pre:** h ≤ b[i] ≥ k
- **Post:** h ≤ b[i] ≥ k
- **Change:** b[h, i, i+1, k]

Insertion Sort:

1. Set `i = 0`
2. While `i < n`:
 - Find minimum index `j` of `b[i..n-1]`
 - Swap `b[i, j]`
 - Increment `i`

Selection Sort:

- First segment always contains smaller values
- Selection sort also is an n^2 algorithm

Partition Algorithm

- **Given:** a list segment $b[h..k]$ with some value x in $b[h]$
- **Pre:** $b[h..k]$
- **Post:** $b[h..k]$ into $b[h..j-1]$ and $b[j..k+1]$

Sorting with Partitions

- **Given:** a list segment $b[h..k]$ with some value x in $b[h]$
- **Pre:** $b[h..k]$
- **Post:** $b[h..k]$ into $b[h..j-1]$ and $b[j..k+1]$

QuickSort

```python
def quick_sort(b, h, k):
    """Sort the array fragment b[h..k]"""
    if b[h..k] has fewer than 2 elements:
        return
    j = partition(b, h, k)
    # b[j-1] < b[j] < b[j+1]
    quick_sort(b, h, j-1)
    quick_sort(b, j+1, k)
```

Final Word About Algorithms

- **Algorithm:**
 - Step-by-step way to do something
 - Not tied to specific language
- **Implementation:**
 - An algorithm in a specific language
 - Many times, not the “hard part”
- **Higher Level Computer Science courses:**
 - We teach advanced algorithms (pictures)
 - You learn on your own