Lecture 23

Loop Invariants
Announcements for This Lecture

Assignments

- A6 due in one week
 - Dataset should be done
 - Get on track this weekend
 - Next Week: ClusterGroup
- A7 will be last assignment
 - Will vote on the due date
 - Posted before Thanksgiving
- There is lab next week
 - No lab week of Turkey Day

Prelim 2

- **Tonight,** 7:30-9pm
 - A–J (Uris G01)
 - K–Z (Statler Aud)
 - SDS received e-mail
- **Make-up** is Monday
 - Only if submitted conflict
 - Also received e-mail
- Graded by the weekend
 - Returned early next week

11/12/15 Loop Invariants
Recall: **Important Terminology**

- **assertion**: true-false statement placed in a program to *assert* that it is true at that point
 - Can either be a *comment*, or an *assert* command

- **invariant**: assertion supposed to "always" be true
 - If temporarily invalidated, must make it true again
 - **Example**: class invariants and class methods

- **loop invariant**: assertion supposed to be true before and after each iteration of the loop

- **iteration of a loop**: one execution of its body
 Assertions versus Asserts

• **Assertions** prevent bugs
 - Help you keep track of what you are doing

• Also **track down bugs**
 - Make it easier to check belief/code mismatches

• **The assert** statement is a (type of) assertion
 - One you are **enforcing**
 - Cannot always convert a comment to an assert

x is the sum of 1..n

```
\[ x \; \text{?} \; n \; 1 \]
```

Comment form of the assertion.

The root of all bugs!
Preconditions & Postconditions

• **Precondition:** assertion placed before a segment
• **Postcondition:** assertion placed after a segment

\[
\begin{align*}
\# \ x &= \text{sum of } 1..n-1 \\
x &= x + n \\
n &= n + 1 \\
\# \ x &= \text{sum of } 1..n-1
\end{align*}
\]

Relationship Between Two

If **precondition** is true, then **postcondition** will be true

\[
\text{x contains the sum of these (6)}
\]

\[
\text{x contains the sum of these (10)}
\]
Solving a Problem

What statement do you put here to make the postcondition true?

A: \(x = x + 1 \)
B: \(x = x + n \)
C: \(x = x + n + 1 \)
D: None of the above
E: I don’t know
Solving a Problem

precondition

x = sum of 1..n

n = n + 1

x = sum of 1..n

postcondition

What statement do you put here to make the postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

Remember the new value of n

Loop Invariants
Invariants: Assertions That Do Not Change

- **Loop Invariant**: an assertion that is true before and after each iteration (execution of repetend)

```plaintext
x = 0; i = 2
while i <= 5:
    x = x + i*i
    i = i + 1
# x = sum of squares of 2..5
```

Invariant:

```
x = sum of squares of 2..i-1
```

in terms of the range of integers that have been processed so far

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\(x = 0; i = 2\)

Inv: \(x = \text{sum of squares of } 2..i-1\)

while \(i \leq 5\):

\(x = x + i\times i\)

\(i = i + 1\)

Post: \(x = \text{sum of squares of } 2..5\)

Integers that have been processed:

Range 2..i-1:

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; i = 2 \]

\# Inv: \(x = \text{sum of squares of } 2..i-1 \)

\textbf{while} \(i \leq 5 \):

\| & x = x + i* \text{i} \\
| & i = i + 1 \\
\| \\

\# Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed:

Range 2..i-1: \(2..1 \) (empty)

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

\[\textbf{while } i \leq 5: \]

\[x = x + i \cdot i \]

\[i = i + 1 \]

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2

Range 2..i-1: 2..2

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \) sum of squares of \(2..i-1 \)

\[\textbf{while} \ i <= 5: \]

\[x = x + i \times i \]
\[i = i + 1 \]

Post: \(x = \) sum of squares of \(2..5 \)

Integers that have
been processed: 2, 3

Range \(2..i-1 \): 2..3

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[
x = 0; \ i = 2
\]

Inv: \(x = \) sum of squares of \(2..i-1\)

while \(i \leq 5\):

\[
x = x + i^2
\]

\[
i = i + 1
\]

Post: \(x = \) sum of squares of \(2..5\)

Integers that have been processed: 2, 3, 4

Range 2..i-1: 2..4

\[
\begin{array}{c}
\text{Integers that have been processed: } 2, 3, 4 \\
\text{Range } 2..i-1: 2..4
\end{array}
\]
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

\# Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[
\begin{align*}
\text{x} &= \text{x} + i^2 \\
\text{i} &= \text{i} + 1 \\
\end{align*}
\]

\# Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2, 3, 4, 5

Range 2..i-1: 2..5

The loop processes the range 2..5
Invariants: Assertions That Do Not Change

\[x = 0; \ i = 2 \]

Inv: \(x = \text{sum of squares of } 2..i-1 \)

while \(i \leq 5 \):

\[x = x + i \times i \]

\(i = i + 1 \)

Post: \(x = \text{sum of squares of } 2..5 \)

Integers that have been processed: 2, 3, 4, 5

Range 2..i-1: 2..5

Invariant was always true just before test of loop condition. So it’s true when loop terminates

The loop processes the range 2..5
Process integers in a..b
inv: integers in a..k-1 have been processed
k = a

while k <= b:
 process integer k
 k = k + 1

post: integers in a..b have been processed
Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
Designing Integer while-loops

1. Recognize that a range of integers $b..c$ has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process $b..c$

Postcondition: range $b..c$ has been processed
Designing Integer \textbf{while}-loops

1. Recognize that a range of integers \texttt{b..c} has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the \texttt{while}-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the \textit{repetend} (process \texttt{k})

\begin{verbatim}
Process \texttt{b..c}

\textbf{while} \hspace{1em} \texttt{k <= c:}
 \hspace{1em} \texttt{k = k + 1}

Postcondition: range \texttt{b..c} has been processed
\end{verbatim}

11/12/15 \hspace{1em} Loop Invariants
Designing Integer \texttt{while}-loops

1. Recognize that a range of integers $b..c$ has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the \texttt{while}-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the \texttt{repetend} (process k)

```
# Process $b..c$

# Invariant: range $b..k-1$ has been processed

\texttt{while} k <= c:
  k = k + 1

# Postcondition: range $b..c$ has been processed
```
Designing Integer while-loops

1. Recognize that a range of integers $b..c$ has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Initialize variables (if necessary) to make invariant true

Invariant: range b..k-1 has been processed

```c
while k <= c:
    # Process k
    k = k + 1
```

Postcondition: range b..c has been processed

11/12/15 Loop Invariants
Finding an Invariant

Make b True if n is prime, False otherwise

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

```plaintext
while k < n:
    # Process k;
    k = k + 1
# b is True if no int in 2..n-1 divides n, False otherwise
```

What is the invariant?
Finding an Invariant

Make b True if n is prime, False otherwise

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;

 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n
Finding an Invariant

Make b True if n is prime, False otherwise
b = True

k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

1 2 3 ... k-1 k k+1 ... n
Finding an Invariant

Make b True if n is prime, False otherwise

b = True

k = 2

invariant: b is True if no int in 2..k-1 divides n, False otherwise

while k < n:
 # Process k;
 if n % k == 0:
 b = False
 k = k + 1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

1 2 3 … k-1 k k+1 … n
Finding an Invariant

set x to # adjacent equal pairs in s

```python
while k < len(s):
    # Process k
    k = k + 1
# x = # adjacent equal pairs in s[0..len(s)-1]
```

Command to do something

```python
for s = 'ebeee', x = 2
```

Equivalent postcondition

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s

while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

What is the invariant?

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

Command to do something

for s = 'ebeee', x = 2

Equivalent postcondition
Finding an Invariant

set x to # adjacent equal pairs in s

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
Which have been processed?

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

What is the invariant?

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

Command to do something
for s = 'ebeee', x = 2

Equivalent postcondition
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):
 # Process k
 k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

Command to do something
for s = 'ebeee', x = 2

Equivalent postcondition
Finding an Invariant

set x to # adjacent equal pairs in s
x = 0
k = 1

inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
 # Process k
 k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

for s = 'ebeee', x = 2

Equivalent postcondition

k: next integer to process.
What is initialization for k?

A: k = 0
B: k = 1
C: k = -1
D: I don’t know

Which do we compare to “process” k?

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know
Finding an Invariant

set x to # adjacent equal pairs in s

\[x = 0 \]

\[k = 1 \]

inv: \(x = \) # adjacent equal pairs in \(s[0..k-1] \)

\textbf{while} \(k < \text{len}(s) \):

 # Process \(k \)

 \[x = x + 1 \text{ if } (s[k-1] == s[k]) \text{ else } 0 \]

 \[k = k + 1 \]

\(x = \) # adjacent equal pairs in \(s[0..\text{len}(s)-1] \)

\[\text{Command to do something} \]

\[\text{for } s = 'ebeee', x = 2 \]

\[\text{Equivalent postcondition} \]

\(\text{k: next integer to process.} \)

\(\text{What is initialization for } k? \)

\[\text{A: } k = 0 \]

\[\text{B: } k = 1 \]

\[\text{C: } k = -1 \]

\[\text{D: I don’t know} \]

\[\text{Which do we compare to “process” } k? \]

\[\text{A: } s[k] \text{ and } s[k+1] \]

\[\text{B: } s[k-1] \text{ and } s[k] \]

\[\text{C: } s[k-1] \text{ and } s[k+1] \]

\[\text{D: } s[k] \text{ and } s[n] \]

\[\text{E: I don’t know} \]
Reason carefully about initialization

Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

```python
# Command to do something
```

```python
c = ??
k = ??
```

inv:

```python
while k < len(s):
    # Process k
    k = k + 1
```

c = largest char in s[0..len(s)-1]

1. What is the invariant?

Equivalent postcondition
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

c = ?? Command to do something
k = ??

inv: c is largest element in s[0..k−1]

while k < len(s):
 # Process k
 k = k+1

c = largest char in s[0..len(s)−1]

1. What is the invariant?

Equivalent postcondition
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

\[c = ?? \] Command to do something

\[k = ?? \]

inv: c is largest element in s[0..k–1]

\(\textbf{while} \) k < len(s):
 # Process k
 \[k = k+1 \]

c = largest char in s[0..len(s)–1]

Equivalent postcondition

1. What is the invariant?

2. How do we initialize c and k?

 A: k = 0; c = s[0]
 B: k = 1; c = s[0]
 C: k = 1; c = s[1]
 D: k = 0; c = s[1]
 E: None of the above
Reason carefully about initialization

s is a string; len(s) >= 1
Set c to largest element in s

\[\text{c} = \text{largest element in } s \]
\[\text{k} = \text{} \]

inv: c is largest element in \[0..k-1\] s

\textbf{while} \ k < \text{len(s)}:\n\quad \# \ \text{Process k}\n\quad \text{k} = \text{k}+1

c = largest char in \[0..\text{len(s)}-1\]

1. What is the invariant?
2. How do we initialize c and k?

\begin{align*}
\text{A: } & \quad k = 0; \quad c = s[0] \\
\text{B: } & \quad k = 1; \quad c = s[0] \\
\text{C: } & \quad k = 1; \quad c = s[1] \\
\text{D: } & \quad k = 0; \quad c = s[1] \\
\text{E: None of the above}
\end{align*}

An empty set of characters or integers has no maximum. Therefore, be sure that \[0..k-1\] is not empty. You must start with \(k = 1\).