
Last Name: First Name: Cornell NetID, all caps:

CS 1110 Final Exam Solutions May 15th, 2014

The Important First Question:

1. [2 points] When allowed to begin, write your last name, first name, and Cornell NetID at the
top of each page. Solution: Always do this! It prevents disaster in cases where a staple fails.

2. [4 points] Objects. Consider the following code (docstrings omitted for exam brevity, line
numbers added for reference).

1 class Prof(object):

2 def __init__(self, n):

3 self.lname = n

4

5 ljl2 = Prof("Schlee")

6 srm2 = Prof("Schmarschner")

7

8 lecturingprof = srm2

9 lecturingprof.wise = True

10 lecturingprof = ljl2

11 print "Is Prof " + srm2.lname + " wise? " + str(srm2.wise)

12 print "Is Prof " + ljl2.lname + " wise? " + str(ljl2.wise)

List all output and/or errors that would be generated by running this code, in the order they
are produced. For each thing you write, indicate what line number produces it.

In the case of errors, it suffices to explain what the problem is — you don’t know have to know
precisely what Python would call the error or print out.

Hint: line 9 does not cause an error. It would be wise (ha!) to understand why before proceed-
ing; what does Python always do when asked to assign to a variable that doesn’t exist?

Solution:

line 11: Is Prof Schmarschner wise? True

Traceback (most recent call last):

File "/Users/llee/classes/cs1110/repo/Exams/final/alias.py", line 12, in <module>

print "Is Prof " + ljl2.lname + " wise? " + str(ljl2.wise)

AttributeError: 'Prof' object has no attribute 'wise'

+2: right output for line 11. This requires understanding string concatenation and that
srm2.lname should be “Schmarshcner” (1 point), and understanding that str(srm2.wise) would
be “True”

+2: A description of the right error for line 12. Does not have to have the exact name of the
error, but has to recognize that the object referred to by ljl2 does not have a “wise” attribute.
No credit for answer saying that ljl2 does not have an lname attribute.

Last Name: First Name: Cornell NetID:

3. [10 points] String processing, loops. We say that a string is a sentence if it consists of
“words” (non-empty sequences of non-space characters) separated by single spaces, with no
spaces at the beginning or end of the string. A sentence is chunked by delimiter dl if an even
number of its words are dl, and no two delimiters are consecutive. Here’s an example of a
sentence that is chunked by “!”.

"The ! Big Red Barn ! was ! blue !"

The interesting spans of a chunked sentence are the sequences of words that appear between
each odd occurrence of dl and the next occurrence of dl. So, “Big Red Barn” is an interesting
span because it occurs between the 1st and 2nd “!”. “was” is not an interesting span because
it occurs after the 2nd “!” (and before the 3rd one).

The highlighted version of a chunked sentence is one where the delimiters have been removed,
every word in an interesting span has been capitalized, and every word not in an interesting
span is in lowercase. For example, the highlighted version of the chunked sentence above is

"the BIG RED BARN was BLUE"

Implement the function below so it fulfills its specification.

Hints (not requirements): Use split and/or join (see reference on page 2). Use a loop, but
do not use a nested loop. Keep track of whether you’re inside or outside an interesting span.

def highlight(input, dl):

"""Return: the highlighted version of the input.

Pre: input: a sentence chunked by dl. dl: non-empty string without spaces."""

Solution:

inside = False

output = []

for word in input.split():

if word == dl:

inside = not inside

else:

output.append(word.upper() if inside else word.lower())

return ' '.join(output)

+1 iterating over the string, either as a list version or the original one

(if the original, hard to see how they'd get the next points)

(-1 for no increment if doing a while loop)

+1 not inside and not dl means lowercase

NOTE: printed exam had typo, so "leave alone" instead of lowercase OK

+2 not inside and dl means start a span, don't print the dl

+1 inside and not dl means uppercase

+2 inside and dl means end a span, don't print the dl

+1 right syntax for calling upper and lower

+2 right output (could be keeping a string or a list all along)

Page 2

Last Name: First Name: Cornell NetID:

(-1 if don't get the spacing right (e.g. double spaces or

extra spaces at the beginning or end); -1 if a list;

-1 if use join but incorrectly)

There is an alternate solution that splits on dl, but note that you have to be a little careful
about handling spaces:

def highlight2(input, dl):

spans = input.split(dl)

for i in range(len(spans)):

spans[i] = spans[i].strip()

if i % 2 == 1:

spans[i] = spans[i].upper()

else:

spans[i] = spans[i].lower()

return ' '.join(spans).strip()

Page 3

Last Name: First Name: Cornell NetID:

4. [12 points] Recursion. We say that an input input is well-formatted with respect to a list
labels if (a) input is a list, and (b) input has length at least two, and (c) input’s first item
is in the list labels, and (d) each of the remaining items in input is either a string or a
well-formatted list. Here are some examples of well-formatted and non-well-formatted inputs:

input labels well-formatted?

['VP', ['V', 'eat']] ['VP', 'V'] True
['NP', ['N', 'a', 'or', 'b'], 'c'] ['NP', 'V', 'N'] True
[1, [2, 'oui', [1, 'no']], 'no'] [1,2] True
['VP', ['V', 'eat']] ['VP'] False: 'V' not in labels

['VP', ['V']] ['VP', 'V'] False: list ['V'] too short
'VP' ['VP', 'V'] False: input is not a list

Implement the following function recursively according to its specification.

def wellformatted(input, labels):

"""Returns: True if <input> is well-formatted with respect to <labels>,

False otherwise.

Pre: labels is a (possibly empty) list.

"""

Solution:

if type(input) != list or len(input) < 2 or (input[0] not in labels):

return False

+1 nonlist base case

+1 too short base case

+1 check of input[0] not in labels

+1 order correct (if you do len(input) before checking if list, could get error)

+1 these should be ors, not ands. OK if implemented via if-elif cascase.

else:

for item in input[1:]:

if type(item) != str and not wellformatted(item, labels):

return False

return True

+1 loop through input starting at 1 *

+1 check for type not being string *

+2 (all or none): correct recursive call *

+1 conjunction check (not disjunction) *

+1 return False if one check fails *

+1 return True if all checks pass

A solution that uses tail recursion (i.e. checks the base case, then

Page 4

Last Name: First Name: Cornell NetID:

makes a recursive call on input[1:]) instead of making recursive

calls on the items of the list, loses 6 points (all the points

marked '*' above.)

Page 5

Last Name: First Name: Cornell NetID:

5. Subclasses.

Consider the accompanying code, which shows part of a solution to A5 that has a curious way
of handling the flow of states in the game. Many details are omitted, but all the code related
to adding and removing objects from the game is preserved.

(a) [3 points] Complete the class hierarchy below showing the relationships between all the
classes in this code.

Game

Breakout

Ball

GObject

GRectangle GEllipseGLabel

Solution:
Game

Breakout

Message

StartMessage
Countdown WinMessage

LoseMessage

Brick Paddle Ball

GObject

GRectangle GEllipseGLabel

(b) [3 points] Remember that when an object is created, Python calls the method init

on that object automatically. The same name resolution process is followed as with any
method call.

Now, to the question: line 45 executes only once. During the execution of that line, line
79 gets executed. At that point in the execution (i.e. when line 79 is executed),

(i) What is the class of the object referenced by self?
Solution: StartMessage

Page 6

Last Name: First Name: Cornell NetID:

(ii) Where does the variable named self.TEXT reside? We want to know in which specific
class, instance, frame, or module it is found—that is, where it would be drawn when
diagramming the execution.
Solution: in the class StartMessage

(iii) At what line was the variable created?
Solution: 89

Page 7

Last Name: First Name: Cornell NetID:

(c) [4 points] Remember that the “call stack” is the set of frames that exist at a particular
time. For instance, during a game when the player loses, line 201 executes exactly once,
and at the start of executing that line, the call stack is:

...

Breakout.update: 51

Ball.update: 201

Here we are including just the first line from each frame, indicating which method is
executing and which line it is at. The frames appear in the order they were created. (Note
that since there are multiple functions with the same name, it’s important to include the
class they are defined in.)

The variable Brick.num bricks is mentioned in the code only at lines 150, 154, 165, and
166. During a game that is won, it is assigned the value 3 exactly twice. At the first time
it gets that value, what is the call stack? Use a format like the example above, and only
mention functions that are defined in breakout.py.

Solution:

...

Breakout.update: 51 # +1

StartMessage.update: 100 # +1

Brick.__init__: 154 # +1

and +1 for not having anything else in there

-1 for being in the wrong order

(d) [12 points] Complete the subclass Countdown of Message that shows the message “Get
ready!” and then, 90 frames after it was created and added to the game, removes itself
from the game and “serves” by adding a new Ball instance to the game. The constants
TEXT and DELAY should determine the message and the time delay before serving the ball.
Be sure your code adheres to the provided class invariant. (To save time on the exam,
there’s no need to write specifications.)

class Countdown(Message):

"""See spec in code handout, line 106"""

TEXT = 'Get ready!'

DELAY = 90

Solution:

+1 for defining an initializer at all *

def __init__(self):

Message.__init__(self)

self.frames_left = self.DELAY

Page 8

Last Name: First Name: Cornell NetID:

+2 for call to superclass initializer (1 for try, 1 for right) *

+1 for initializing frames_left

+1 for correct use of self and/or Countdown to access DELAY

+1 for giving frames_left the right name and using DELAY

(-2 for directly using DELAY as the counter)

+1 for defining update at all (OK to forget dt) *

def update(self, dt):

self.frames_left -= 1

if self.frames_left == 0:

Breakout.the_game.add_game_object(Ball())

Breakout.the_game.remove_game_object(self)

+1 for decrement

+1 for testing against zero (off by one OK)

+1 for accessing Breakout.the_game correctly

+1 for creating a new ball and adding it

+1 for removing self

-1 for every two minor syntax issues (missing colons, etc.)

Solutions that did not define any methods at all but contained

much of the correct code were usually around 6/12, losing the points

indicated by '*' and an additional 2 for using the undefined

name 'self'.

Page 9

Last Name: First Name: Cornell NetID:

6. [10 points] Invariants. Suppose we are given the task of rearranging a string so that cer-
tain characters are moved to the beginning and the other characters are moved to the end.
Implement this method to the specification given below, following the comments in the code.

def partition_string1(s1, s2):

"""Return: a string that has the same characters as s1, only reordered

so that all the characters that appear in s2 are at the beginning, and

all the characters that do not appear in s2 are at the end. The ordering

of the characters within each of the two segments is not important.

Examples:

s1 ; s2 ; some correct results

'abracadabra' ; 'abc' ; 'abacaabardr', 'aaaabbcrdr', ...

'foobar' ; 'ob' ; 'boofar', 'oboarf', ...

'foobar' ; '' ; 'foobar', 'oofarb', ...

'a' ; 'b' ; 'a'

"""

This function works by converting the input to a list and rearranging

the list in place using swaps, following the invariant below. Your

code must agree with the invariant and postcondition for full credit.

convert to a list b

initialize counters

inv: b[0..i-1] in s2; b[j+1..len(b)-1] not in s2

while

post: b[0..j] in s2; b[j+1..len(b)-1] not in s2

convert b back to a string and return

Solution:

Page 10

Last Name: First Name: Cornell NetID:

convert to a list b

b = list(s1) # +1

initialize counters

i = 0 # +1

j = len(b) - 1 # +1

inv: b[0..i-1] in s2; b[j+1..n-1] not in s2

while j != i - 1: # +2 for correct condition (*)

if b[i] in s2: # +1 checking correctly

i += 1 # +1 for valid update in no-swap case

else:

b[i], b[j] = b[j], b[i] # +1 for correct swap

j -= 1 # +1 for correct increment

post: b[0..j] in s2; b[i+1..n-1] not in s2

convert b back to a string and return

return ''.join(b) # +1

(*) various equivalent conditions are possible including

i != j + 1, i < j + 1, i - 1 < j, etc.

Note that "while j != i" or "while i < j" also produces

correct return values but *does not* truthify the postcondition

so -1.

Page 11

