
Last Name: First Name: Cornell NetID, all caps:

CS 1110 Final Exam May 9th, 2013

This 150-minute exam has 7 questions worth a total of 53 points. When permitted to begin, scan
the whole test before starting. Budget your time wisely. Use the back of the pages if you need
more space. You may tear the pages apart; we have a stapler at the front of the room.

If a question does not explicitly ask for you to write an invariant, you don’t have to for that
problem. However, we strongly recommend that you provide comments explaining the meaning of
your variables if you think they might be unclear to the graders.

The second page of this exam gives you the specifications for some useful functions.

It is a violation of the Academic Integrity Code to look at any exam other than
your own, to look at any other reference material, or to otherwise give or receive
unauthorized help.
We also ask that you not discuss this exam with students who are scheduled to take
a later makeup.
Academic Integrity is expected of all students of Cornell University at all times, whether in the
presence or absence of members of the faculty. Understanding this, I declare I shall not give, use
or receive unauthorized aid in this examination.

Signature: Date

The Important First Question:

1. [2 points] When allowed to begin, write your last name, first name, and Cornell NetID at the
top of each page.

Last Name: First Name: Cornell NetID:

filler

For reference:

str.find(substr) Returns: index of first occurrence of string substr in string str

(-1 if not found)

str.find(substr, i) Returns: index of first occurrence of string substr in string str

that occurs at or after index i (-1 if not found)

range(n) Returns: the list [0, 1, 2, ..., n-1]

lt.insert(i,item) Insert item into list lt at position i

lt.append(item) Adds item to the end of list lt

lt.extend(lt2) Extend list lt by appending all the items in list lt2

lt.pop(i) Remove the item in list lt at index i, and return it

lt.index(item) Returns: index of first occurrence of item in list lt; raises an error
if item is not found. (There’s no “find” for lists.)

lt[i:j] Returns: A new list[lt[i], lt[i+1], . . ., lt[j-1]] under or-
dinary circumstances. Returns [] if i ≥ len(lt)

lt.reverse() Reverses the list lt in place (so, lt is modified)

set() Creates an empty set

st.add(item) Adds item to set st

st1.union(st2) Returns a new set consisting of all the items in set st1 and all the
items in set st2, with no duplicates

Question Points Score

1 2

2 6

3 12

4 7

5 10

6 6

7 10

Total: 53

Page 2

Last Name: First Name: Cornell NetID:

2. [6 points] Recursion. Consider a class Snode representing simplified versions of the nodes
from A4: with snodes, we don’t worry about “conversion”. Snodes have just two instance
variables:

• gen, an int indicating this snode’s generation

• contacted, a (possibly empty) list of snodes that this one has contacted. If s is an snode,
for each item c in s.contacted, c.gen has the value s.gen + 1.

We say that an snode d is a descendant of snode s if d has been contacted by s, or if d is a
descendant of an snode that s has contacted. We also say that an snode is fruitful if it has
descendants of its own. In the diagram below, the circled snode has 7 descendants but only 4
fruitful descendants (the filled-in squares).

Write a recursive implementation of the following function. To keep your answer short, don’t
employ memoization. No credit for non-recursive solutions.

def fruitful_descendants(s):

"""Returns: set of fruitful descendants of s. Pre: s is an snode."""

Page 3

Last Name: First Name: Cornell NetID:

3. [12 points] Loops, objects, try-clauses. In this question, we model people who have voted
on a number of issues. Implement the two methods below according to the given specifications
and class invariants.

NUM_ISSUES = 10 # the issues that were voted on are numbered 0 .. NUM_ISSUES-1

class Voter(object):

"""An instance is someone who voted on all the issues.

Instance variables:

party [string]: voter's political party. Different strings are considered different

parties (e.g., 'green' is different from 'Green')

record [list of ints]: voter's voting record. Item i is 1 if this

voter voted "Yes" on issue i, 0 otherwise. Length is NUM_ISSUES.

"""

def __init__(self, party, record):

"""Initializer: a voter of party <party> and record <record>.

Pre: <party> a string. <record> is this voter's voting record on the issues

(not a copy)."""

Page 4

Last Name: First Name: Cornell NetID:

def is_maverick(self, i, sample):

"""Returns: True if for issue i, this voter's vote is in the minority for their

party among the voters in voter list <sample>, False otherwise.

In other words, if this voter is in party p, and *including* this voter

less than 50% of the members of party p in list <sample> voted the

way this voter did, then this method should return True.

NOTE: if an IndexError occurs in the code, this function prints

'bad issue number' and returns False (rather than crashing).

Any other type of exception should not be handled by this function.

Pre: i is a valid issue number, and this voter is in <sample>.

Do not assume all the voters in <sample> are in the same

party.

AFTER-THE-FACT ADDITION: we should have removed the valid-issue-number precondition"""

Page 5

Last Name: First Name: Cornell NetID:

4. [7 points] Subclasses. A Tory is a voter who belongs to the Tory party. Write the class
definition, including complete initializer function, for a subclass of the class Voter representing
Tory voters.

In the interests of time, you need not provide any docstrings, but your initializer must satisfy
the following spec:

"""Initializer: a voter in the Tory party with voting record <record>.

Pre: <record> a list of where for every issue i,

<record>[i] is 1 if this voter voted yes for that issue,

0 otherwise.

"""

Page 6

Last Name: First Name: Cornell NetID:

5. [10 points] Frames and folders. You’re being pressed into service again as an adjunct CS1110
TA, and your job is to mark this student’s frames-and-folders drawing by (a) neatly scribbling
out each thing (variable, frame, or folder) that appears in a place where it does not belong, (b)
circling each variable that is in the right place but has the wrong value, and (c) writing in each
variable and value that is missing from the place where it belongs. There may or may not be
corrections in all three categories. The original exam question is: Diagram the execution of the
following code

a = A(9)

b = B(6,8)

b.f(a)

given the following class definitions.

class A(object): class B(A):

def __init__(self, x): def __init__(self, x, y):

self.x = x A.__init__(self, x)

self.y = y

def f(self, other):

self.y = other.x def f(self, other):

self.x = other.x

Please include class folders for both classes.

a id1

b id2

A
id1

x 9

B
id2

x 6/ 9
y 8/ 9

A
__init__()
f()

B(A)
__init__()
f()

A.__init__: 1/

self xid1 9

B.__init__: 1/2/

self id2 y 8

A.__init__: 1/

self xid1 6

B.f: 1/

other id1

other id2

A.f: 1/

self id1

self id2

x 6

Page 7

Last Name: First Name: Cornell NetID:

6. [6 points] Loop invariants. The following code to count the number of distinct runs of
consecutive spaces has an invariant that doesn’t correspond to the code.

def num_space_runs(s):

"""The number of runs of spaces in the string s. Examples:

" a f g " is 4

"a f g" is 2

" a bc d" is 3.

Precondition: len(s) >= 1

"""

i = 1

n = 1 if s[0] == ' ' else 0

inv: s[0..i] contains n runs of spaces

while i != len(s):

if s[i] == ' ' and s[i-1] != ' ':

n += 1

i += 1

post: s[0..len(s)-1] contains n runs of spaces

return n

This code works correctly but does not agree with the invariant. Change at most three lines
in this function so that it is still correct but the code agrees with the invariant. Indicate your
changes by crossing out the line to be changed and rewriting it neatly to the right. (Hence,
any reordering of lines should be done by rewriting the lines, not by drawing arrows.) This
problem can be solved either by changing the invariant or by changing the code.

Page 8

Last Name: First Name: Cornell NetID:

7. [10 points] Iteration and recursion. In this question we approach a simple problem, that of
making a reversed copy of a list (without modifying the original list), in two ways.

(a) Implement the following function according to spec, using recursion. Your function must
call itself.

def reverse(x):

"""Return a copy of the list x, in reverse order."""

(b) Implement the following function according to spec, using iteration. Your function must
be based on a loop. Hint: There are solutions based on counting forwards, counting
backwards, and looping over the sequence directly; use whichever you find easiest.

def reverse(x):

"""Return a copy of the list x, in reverse order."""

Did you write your name and netID on each page, and re-read all specs?
Then, have a great summer break!

Page 9

