Review Session for

EXCEPTIONS
&
GUI

-Deepak Bapat

Adapted from Previous Review Slides

Exception: event that disrupts the
normal flow of program execution

Throwable Class and Its Subclasses

Exceptions are

sign: signals that hel
gnals that g at help

I ay be needed;
things are

Error ‘ Exception
1

A\

7u \xl u_l \Il lM{xception‘

How do you know if a method throws an
exception?

¢ Execution generates an error if a method throws an exception
and you have not handled it yet. You may catch the exception
and handle it.

e Refer to Javadoc API specifications.
Eg : method charAt inclass String

public char charAt(int index)
Return the character at the specified index. An index ranges
from 0 to length() - 1. ...

Throws: IndexOutOfBoundsException - if the index argument
is negative or not less than the length of this string.

Writing an exception class

class MyException extends Exception {
public MyException( ) {

super(); Probably best

to extend

public MyException(String msg) { RuntimeException
super(msg);

}

public class Test {
public void testMethod( ){
throw new MyException( );

}

}

Error: Unhandled exception type MyException in testMethod()

class MyException extends
Exception{
public MyException() {

}
public MyException(String msg) {
super(msg);

} class Test {
public void testMethod( ) {
try {
throw new MyException( );
} catch (MyException e) {
e.printStackTrace();

try/catch statements

* What you just saw on the previous page was a try/
catch block

* Sometimes voluntary, sometimes java requires you to
try/catch or throw (get to throw in a minute)

* We “try” a series of commands, but if we get an
exception we “catch” the exception and do
something else

int x=0;

String s = “java”;

try {
x = Integer.parselnt(s);
x=2;

} catch (NumberFormatException e) {
x=1;

}




Throwing exceptions

+ To throw an exception, you use the command
« throw <exception>
* throw new MyException()
* When an exception is thrown, normal flow of code stops
¢ The exception is propagated up function calls
* If no catch statement is found, java will exit and the error will be
displayed /¥ lllustrate exception handling */
public class Ex {
public static void first() {
second();
}
public static void second() {
third();
}
public static void third() {
throw new
MyException("mine");

7 }

The “throws” clause

/#* Class to illustrate exception handling */
public class Ex {
public static void first() throws MyException {
second();

public static void second() throws MyException {
third();

public static void third() throws MyException {
throw new MyException("mine");

}

Output of Ex.first()
Call Opgput

Ex first();
ArithmeticException:
at Ex.third(Ex.java: |4
at Ex.second(Ex.java:
at Ex first(Ex.java:5)
at sun.reflect.NativeMethodAccessorlmpl.invokeO(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(...)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(...)
at java.lang.reflect.Methodinvoke(M(qethod.java:SSS)

Some Java Exception classes

ApplicationException
ArithmeticException
ArrayStoreException
FileNotFoundException
IndexOutOfBoundsException
Illegal ArgumentException
[llegalStateException
InvalidOperationException
InvalidParameterException

Which is better?

Using exceptions
public static Object get(Vector v, int i) {
try {
return v.get(i);
} catch (Exception e) {
return null;
} } Using an if-statement
public static Object get(Vector v, int i) {
if (i < 0[] v.size() <= i)
return null;
return v.get(i);

}

What is wrong with this?

try {
int bricksInRow= Integer.valueOf(b[0]);
int brickRows= Integer.valueOf(b[ I]);
if (bricksInRow <= 0 || brickRows <= 0)
return;

} catch (NumberFormatException nfe) {
BRICKS_IN_ROWS= bricksInRow;

BRICK_ROWS= brickRows;
BRICK_WIDTH=WIDTH / BRICKS_IN_ROW - BRICK_SEP_H;




/¥ If b is null, doesn't have exactly two elements, or the elements are not
positive integers, DON'T CHANGE ANYTHING.
Ifb is non-null, has exactly two elements, and they are positive
integers with no blanks surrounding them, then:
Store the first int in BRICKS_IN_ROW, store the second int in BRICK_ROWS,
and recompute BRICK_WIDTH using the formula given in its declaration.
*

private static void fixBricks(String[] b) {

1¥* Hint.You have to make sure that the two Strings are positive integers.

The simplest way to do that is to use the calls Integer-valueOf(b[0]) and
Of(b[1]) within a tr in which the catch block is

empty. Don't store any values in the static fields UNTIL you are sure
that both array elements are positive integers.*/

if (b == null || blength != 2)
return;

try
int bricksinRow= Integer.valueOf(b[0]); BAD

int brickRows= Integer.valueOf(b[1]); i 1= ==
if (bricksinRow <= 0 || brickRows <= 0) if (bAIength =2 ” b nuII)
return

return;
BRICKS_IN_ROW= bricksinRow;
BRICK_ROWS= brickRows;
BRICK_WIDTH=WIDTH / BRICKS_IN_ROW - BRICK_SEP_H;
} catch (NumberFormatException nfe) {
}
}

13

GUIs
¢ Three things are a must know
e JFrame
* JPanel
* Box

* Each has its own default LayoutManager
¢ JFrame — BorderlLayout
* JPanel — FlowLayout
* Box — BoxLayout

GUIs - JFrame

Extend a JFrame implement its functionality or just call a

JFrame
+  JFrame frame = new JFrame("FrameDemo"); B Framedemo Z]B]X)
+  public class ComponentExample extends JFrame {
public ComponentExample(String t) {
super(“FrameDemo”);

}

The default LayoutManager is BorderLayout
North
West HCenterﬂ East
South
s

GUIs - JFrame

Components in a JFrame

¢ java.awt: Old package

* javax.swing: New package

« Components

JButton, Button: Clickable button

JLabel, Label: Line of text

JTextField, TextField: Field into which the user can type:
JTextArea, TextArea: Many-row field into which user can type
JPanel, Panel: Used for graphics; to contain other components
JCheckBox: Checkable box with a title

JComboBox: Menu of items, one of which can be checked
JRadioButton: Same functionality as JCheckBox

Container: Can contain other components

Box: Can contain other components

Basic Components

Component Component: Something that can be
Button, Canvas placed in a GUI window. These are the
Checkbox, Choice basic ones that one uses in a GUI
Label, List, Scrollbar
TextComponent

TextField, TextArea
Container
JComponent Note the use of subclasses to provide
AbstractButton structure and efficiency. For example, there
Button are two kinds of JToggleButtons, so that class
jT:ggIeButton has two subclasses.
JCheckBox
RadioButton
JLabel, JList

JOptionPane, JPanel
JPopupMenu, JScrollBar, JSlider
JTextComponent

JTextField, JTextArea

Components that can contain other components

Component

Box

Container java.awt is the old GUI package.
JComponent javax.swing is the new GUI package.When they
JPanel wanted to use an old name, they put J in front of
Panel it.

~ Applet (e.g Frame and JFrame)

Window

Frame L .
JFrame When constructing javax.swing, the attempt was
. made to rely on the old package as much as

JWindow

possible.
So, JFrame is a subclass of Frame.

But they couldn’ t do this with JPanel.




GUIs - BorderLayout

IContainer cp= getContentPane(); ‘

Button jb= new |Button(“Click here”); North

Label jl= new JLabel( “label 2");

icp.add(jb, BorderLayout.EAST); West HcenterH East

icp.add(jl, BorderLayout. WEST);
South

pack();
setVisible(true);

You can pack up to 5 things, so you
might nest JPanels within a JFrame

GUIs - JPanel

*  This is another type of container
*  We nest these inside of other windows
*  The default LayoutManager is FlowLayout

FlowLayout
* Place any number of components in a container

B Flowl ayoutDemo

‘ Button 1 H Button2 || Bution3 H Long-Named Button 4 ‘ 5

@ Lettoright O Righttolet | _apply orientation
D

ayoutDemo;

GUIs - FlowLayout

JPanel compsToExperiment = new JPanel();

compsToExperiment.add(new JButton("Button 1")); compsToExperiment.add
(new JButton("Button 2")); compsToExperiment.add(new |Button("Button 3"));
compsToExperiment.add(new JButton("Long-Named Button 4"));
compsToExperiment.add(new JButton("5"));

JPanel controls = new JPanel();

controls.add(new JRadioButton(“Left to right”));

controls.add(new JRadioButton(“Right to left”));

controls.add(new JButton(“Apply orientation”));

Flowl.ayoutDemo.

‘ Button 1 H Button2 || Bution3 H Long-Named Button 4 HL‘

@ Lefttoright O Rightto left | Apply orientation

GUIs - Box

public class BoxDemo extends |Frame {
/¥ horizontal Box with 4 buttons in center. ¥/
public BoxDemo() {
super("Box demo");
Box b= new Box(BoxLayout.X_AXIS);
b.add(new JButton("0"));  b.add(new JButton("1"));
b.add(new JButton("2"));  b.add(new JButton("3"));
getContentPane().add(b);
}
}

Boxes use a BoxLayout in which you add
components along an axis




