CS 1110
Prelim II: Review Session

Exam Info

Prelim II: 7:30-9:00PM, Tuesday, 8 November,
Baker Lab 200, 219, 119

Look at the previous Prelims

* Arrive early! Helps reducing stress

* Grades released the same evening (morning...)

| N

Regrade Requests

* Releasing grades quickly is good for you —
exams serve two purposes:
— Give feedback to student and teacher
— Give grades

That’s one reason we
grade ~290 exams so
quickly

Review session

* Let’s make this interactive
— More fun

* Presentation is at slower pace than a regular
lecture

¢ Ask questions
— All questions are smart ones

What’s in the exam?

* Everything you needed to know for Prelim |
* Vector / String class, functions

¢ Writing functions

* Recursive Functions

* Loops: for, while

» apparent/real classes, casting, operator
instanceof, function equals

* Abstract classes and methods

What’s in the exam?

Everything you needed to know for Prelim |

Vector / String class, functions gonna assume

you can do this with
your eyes closed by
now

* Writing functions

Recursive Functions
* Loops: for, while

apparent/real classes, casting, operator
instanceof, function equals

Abstract classes and methods

What’s in the exam?

Everything you needed to know for Prelim |

Vector / String class, functions
¢ Writing functions

Recursive Functions
* Loops: for, while

apparent/real classes, casting, operator
instanceof, function equals

Abstract classes and methods

(Fall’07) Question 1 (15 points). Write the body of the
following function recursively.

/** = n, but with its digits reversed.
Precondition: n >= 0.
e.g. n = 135720, value is "027531".
e.g. n 12345, value is "54321".
e.g. n 7, value is "7".
e.g. n = 0, value is "Q0".*/

public static String rev(int n) {

returns a String

Recursive Function 4 Principles

* 1. Write the precise specification

/** = n, but with its digits reversed.
Precondition: n >= 0.

e.g. n = 135720, value is "027531".
e.g. n = 12345, value is "54321".
e.g. n =17, value is "7".

e.g. n =0, value is "0".*/
public static String rev(int n) {

// base case:

//{n has only one digit}

// recursive case:
// {n has at least two digits}

Recursive Function 4 Principles

* 1. Write the precise specification

¢ 2. Base Case

/** = n, but with its digits reversed.
Precondition: n >= 0.

e.g. n = 135720, value is "027531".
e.g. n = 12345, value is "54321".
e.g. n =17, value is "7".

e.g. n =0, value is "0".*/
public static String rev(int n) {

// base case:

//{n has only one digit}

if (n < 10)

// recursive case:
// {n has at least two digits}

Let’s review some type issues

What is the type of?

. 42

e o4 42

. ‘a’ + ‘b’

* ‘b’ + "anana"

. \bl + \al + "nana"

« ‘b’ + (‘a’ + "nana")

« " 4 ‘b’ 4+ ‘a’ + "nana"

/** = n, but with its digits reversed.
Precondition: n >= 0.
.g. n = 135720, value is "027531".
.g. n = 12345, value is "54321".
.g. n =17, value is "7".
e.g. n = 0, value is "0".*/
public static String rev(int n) {
if (n < 10) base case:
return "" + n; n has 1 digit

® 0 0

// recursive case:
// {n has at least two digits}

Recursive Function 4 Principles

* 1. Write the precise specification
* 2. Base Case

* 3. Progress

— Recursive call, the argument is “smaller than” the
parameter. Ensures base case will be reached
(which terminates the recursion)

* 4. Recursive case

/** = n, but with its digits reversed.
Precondition: n >= 0.
.g. n = 135720, value is "027531".
.g. n = 12345, value is "54321".
.g. n =17, value is "7".
e.g. n = 0, value is "0".*/
public static String rev(int n) {

® 0 0

if (n < 10) base case:
return "" + n; n has 1 digit
// n has at least 2 digits recursive case:

return (n%10) + rev(n/10);

/** = the reverse of s.*/
public static String rev(String s) {
if (s.length() <= 1)
return s;

base case

// { s has at least two chars }

int k= s.length()-1;

return s.charAt(k) + recursive case
rev(s.substring(l,k)) +
s.charAt (0) ;

Do this one using this idea:
To reverse a string that contains at
least 2 chars, switch first and last
ones and reverse the middle.

/** reverses a given array of ints*/
public static void rev(int[] a) {

}

A word on arrays

An array is a container object that holds a fixed
number of values of a single type.

The length of an array is established when the
array is created.

After creation, its length is fixed.

//declares a variable that stores an int array
name
int[] a;

//creates an array of size 4
a = new int[4];

//creates and initializes an array of size 3
int [] b = new int[] {1,2,3};

//stores size of array in a variable
int size = b.length;

//swaps first and last elements in array b
int temp = b[0];

b[0] = b[1]

b[l] = temp;

/** reverses a given array of ints*/
public static void rev(int[] a) {

}

/** reverses h..k of a given array of ints */
private static void rev_in_range(int[] a, int
h,int k) {

/** reverses a given array of ints*/
public static void rev(int[] a) {
rev_in_range(a,0,a.length-1);

}

/** reverses h..k of a given array of ints */
private static void rev_in_range(int[] a, int
h,int k) {

//Base case: k-h is 0 or -1

if (k-h <= 0) return;

//Recursive case

}

/** reverses a given array of ints*/
public static void rev(int[] a) {
rev_in range(a,0,a.length-1);

}

/** reverses h..k of a given array of ints */
private static void rev_in_range(int[] a, int
h,int k) {

//Base case: k-h is 0 or -1

if (k-h <= 0) return;

//Recursive case

int temp = a[h];

a[h] = a[k];

al[k] = temp;

rev_in range(a,h+l,k-1);

}

/** reverses a given array of ints*/
public static void rev(int[] a) {
rev_in_range(a,0,a.length-1);

}

/** reverses h..k of a given array of ints */
private static void rev_in_range(int[] a, int
h,int k) {

//Base case: k-h is 0 or -1 Something
if (k-h <= 0) return; horribly wrong
//Recursive case here...

int temp = a[h];

a[h] = a[k];

a[k] = temp;

rev_in_range(a,h+l,k-1);

}

/** reverses a given array of ints*/
public static void rev(int[] a) {
rev_in range(a,0,a.length-1);

}

/** reverses h..k of a given array of ints */
private static void rev_in_range(int[] a, int
h,int k) {

//Base case: k-h is 0 or -1 Something
if(k-h <= 0) return; horribly wrong
//Recursive case here...

int temp = a[h];

a[h] = a[k];

a[k] = temp;
rev_in range(a,h+l,k-1);

} <

Yes, bad indentation is horrible

Loops Part

For loops

We want to write a loop that calculates the sum of squares of
the elements of an array v of ints.

1) Range of integers to be processed.
2) Write postcondition.

3) Write loop.

4) Write Invariant.

5) Write Initialization.

6) Process int in the range.

Loop Invariant

Loop Invariant

* Invariant?

* Inv: x = sum of integers in the range 1..(i-1)
* x=0;

e for (inti=1;i<=100;i=i+1)

X=X+1i;

Invariant?
x=0;
for (inti=1;i<=100;i=i+1)
X=X+1i;
Postcondition
¢ Invariant?

¢ Inv: x = sum of integers in the range 1..(i-1)
¢ Postcondition?

* x=0;
e for (inti=1;i<=100;i=i+1)

X=X+1i;

Postcondition

* Invariant?

* Inv: x = sum of integers in the range 1..(i-1)
* Postcondition?

* Post: x = sum of integers in the range 1..100
¢ x=0;

o for(inti=1;i<=100;i=i+1)

X=X+i;

For loops
We want to write a loop that calculates the sum of squares of
the elements of an array of ints.

// v is an array of ints.
// range: 0..v.length-1

int x = 0;

For loops
We want to write a loop that calculates the sum of squares of
the elements of an array of ints.

// v is an array of ints.
// range: 0..v.length-1

int x = 0;

// postcondition:

// x = sum of squares of all the elements of v

For loops
We want to write a loop that calculates the sum of squares of
the elements of an array of ints.

// v is an array of ints.

// range: 0..v.length-1

int x = 0;

// inv: x = sum of squares of v[0..i-1]
for (; ;) {

// process i

}
// postcondition:
// x = sum of squares of all the elements of v

For loops
We want to write a loop that calculates the sum of squares of
the elements of an array of ints.

// v is an array of ints.

// range: 0..v.length-1

int x = 0;

// inv: x = sum of squares of v[0..i-1]
for (int i=0; i<v.length; i=i+l) {

// process i

}
// postcondition:

// x = sum of squares of all the elements of v

For loops
We want to write a loop that calculates the sum of squares of
the elements of an array of ints.

// v is an array of ints.
// range: 0..v.length-1
int x = 0;
// inv: x = sum of squares of v[0..i-1]
for (int i=0; i<v.length; i=i+l) {
// process i
x = x + v[i] * v[i];
}
// postcondition:
// x = sum of squares of all the elements of v

While loops
We are given a Vector v of Integersand a threshold t (int). We
replace every value in the vector by 0 if it is <= t ; by 1 otherwise.
// precondition: v is a Vector of Integers

// invariant:

// postcondition:
// every value in v has been replaced by 0

// if it was originally <= t, by 1 otherwise.

While loops
We are given a Vector v of Integersanda tEZeshoId t (int).
replace every value in the vector by 0 if it is <= £ ; by 1 otherwise.
// precondition: v is a Vector of Integers
// invariant:
// for every j in the range 0..i-1,
// vI31=0 if the value of v at 0 was initially <= t;

/7 v[j]=1 otherwise.

// postcondition:
// every value in v has been replaced by 0

// if it was originally <= t, by 1 otherwise.

We

While loops

We are given a Vector v of Integersand a tEeshoId t (int). We
replace every value in the vector by 0 if it is <= t ; by 1 otherwise.

// precondition: v is a Vector of Integers

// invariant:

// for every j in the range 0..i-1,

// vI31=0 if the value of v at 0 was initially <= t;

// vI3jl=1 otherwise.

int i=0;

while (i < v.size()) {

i= i+l
}
// postcondition:
// every value in v has been replaced by 0

// if it was originally <= t, by 1 otherwise.

While loops
We are given a Vector v of Integersandathreshold t (int) .
replace every value in the vector by 0 if it is <= £ ; by 1 otherwise.
// precondition: v is a Vector of Integers
// invariant:
// for every j in the range 0..i-1,
// vI31=0 if the value of v at 0 was initially <= t;
// vIjl=1 otherwise.
int i=0;
while (i < v.size()) {
int x = (Integer) v.get(i);
v.set(i,x <=t ? 0 : 1);
i=i+l;
}
// postcondition:
// every value in v has been replaced by 0

// if it was originally <= t, by 1 otherwise.

We

What’s in the exam?

Everything you needed to know for Prelim |

Vector / String class, functions
¢ Writing functions

Recursive Functions
* Loops: for, while

apparent/real classes, casting, operator
instanceof, function equals

Abstract classes and methods

Apparent type: appeared type of object
Animal a = new Cat();
Animal is the apparent type

Real type: real type of the object
Animal a = new Cat();
Cat is the real type

instanceof: operator. Test the class of an object
Animal a = new Cat();
(a instanceof Animal) == true
(a instanceof Cat) == true

public class Movie { public class Documentary extends Movie {
private String title; // title of movie private String topic; //
private int length; // length in minutes

/** Constructor: instance with title t,
/** Constructor: document with title t Length n, and topic p */
and len minutes long */ public Documentary(String t, int n,

public Movie (String t, int len) {

title= t; length= len;
)
/** = title of this Movie */
public String getTitle()

{ return title; |

String p) (
super (t, n);
topic= p;

/** = "Documentary" */
public String DocumentaryType ()
return "Documentary";)

/** = length of document, in minutes */
public int getlLength()
/** = popularity of this instance */
(return length; } et .
L public int popularity()
/** = the popularity: { return 200 - getlength(); |

shorter means more popular */
public int popularity()

}

(return 240 - length; public class Short extends Documentary (
/** Constructor: instance with title t,
! length n, and topic p */
public Short (String t, int n, String p)
super(t, n, p); |

public class Trailer extends Movie { L iaisplays acknowledgenent */
public String showack ()

return "We thank our director";}

/** Constructor: a trailer of movie t.
Trailers are 1 minute long*/

public Trailer(String t) /** = "Short Doc" */
(super(t, 1);} public String DocumentaryType ()
} (return "Short Doc"; |

Class Hierarchy

Movie
Documentary Trailer

Short

(Fall’05) Question 4 (30 points) For each pair of statements below,
write the value of d after execution. If the statements lead to an
error, write “BAD” and briefly explain the error. (The question
continues on the next page.)

Documentary e=

new Short ("Man on Wire”, 5
boolean d=

"Bio");

"Short Doc” .equals(e.DocumentaryType());

(Fall’05) Question 4 (30 points) For each pair of statements below,
write the value of d after execution. If the statements lead to an
error, write “BAD” and briefly explain the error. (The question
continues on the next page.)

Documentary e=

new Short ("Man on Wire”, 5, "Bio");
boolean d=

"Short Doc” .equals(e.DocumentaryType());

True . method equals here is from the string object

2.
Movie c=

new Documentary(null, 3, "Carter Peace Center");

int d= c.popularity();

public class tovie { public class Documentary extends Movie {

private String title; // title of movie private String topic; //
private int length; // length in minutes
/** Constructor: instance with title t,
/** Constructor: document with title t Length n, and topic p */

and len minutes long */

public Documentary(String t, int n,

public Movie(String t, int len) | String p)

title= t; length= len; super (t, n);

) topic= p;

/*+ = title of this Movie */ '

public String getTitle() J++ = WDocumentary" *+/
(return title; } public String DocumentaryType ()

/** = length of document, in minutes */ { return "Documentary"; }

public int getlength()

. length; } /** = popularity of this instance */

{ retumn length; public int popularity()

/** = the popularity: { return 200 - getlength();)

shorter means more popular */

public int popularity()

(zetuzn 240 - length;) public class Short extends Documentary
/** Constructor: instance with title t,

! length n, and topic p */

public short (String t, int n, String p)
{ super(t, n, p); |

public class Trailer extends Movie | L ksprays acknowledgenent */
public String showhck ()

/** Constructor: a trailer of movie t. (return "We thank our director;}

Trailers are 1 minute long*/
public Trailer(String t) 1o

hort Doc” +/
(supez(t, 1):} public String DocumentaryType ()
) { return "Short Doc"; }

2.

Movie c=

new Documentary(null, 3, "Carter Peace Center");

int d= c.popularity();

Movie
Documentary Trailer
Short
* What is the apparent class?

* Answer: 197. method popularity of
class Documentary is called

3.
Short b= (Short) (new Documentary("", 2, "WMD"));
int d= b.DocumentaryType () .length();

java.lang.ClassCastException: From Documentary to Short

You don’t know if a documentary is a short

4.
Movie a= (Movie) (new Trailer ("Harry Potter"));
int d= a.popularity();

Movie
Documentary Trailer =
Short

* The cast s legal!
* Which popularity() method is called?

4.
Movie a= (Movie) (new Trailer ("Harry Potter"));

int d= a.popularity();

Movie

Documentary Trailer =
Short

* The cast is legal!

* Method popularity() from Movie is called (inherited by
Trailer)

¢ Answer: 239

5.
Movie f= new Short ("War", 1, "Vietnam");

char d= f.DocumentaryType ().charAt(l);

The methods that can be called are determined by
the apparent type:

Only components in the apparent class (and above)!!!

5.
Movie f= new Short ("War", 1, "Vietnam");
char d= f.DocumentaryType ().charAt(l);

The methods that can be called are determined by
the apparent type:

Only components in the apparent class (and above)!!!

f.DocumentaryType() is illegal. Syntax error.

Answer: BAD

Recap: equals(Object ob)

In class Object
—b.equals(d) is the same as b ==
* Unless b == null (why?)
Most of the time, we want to use equals to
compare fields. We need to override this
method for this purpose

(Fall’05) Question 4 (24 points). (a) Write an instance method
equals(Object obj) for class Documentary

public class Documentary extends Movie {

/** = "obj is a Documentary with the same values
in its fields as this Documentary" */

public boolean equals (Object obj) {

public class Documentary extends Movie {

/** = "obj is a Documentary with the same values
in its fields as this Documentary" */

public boolean equals (Object obj) {

if (! (obj instanceof Documentary) {

public class Documentary extends Movie {

/** = "obj is a Documentary with the same values
in its fields as this Documentary" */

public boolean equals (Object obj) {

if (! (obj instanceof Documentary) {
return false;

public class Documentary extends Movie {

/** = "obj is a Documentary with the same values
in its fields as this Documentary" */

public boolean equals (Object obj) {

if (! (obj instanceof Documentary) {
return false;
}

Documentary docObj= (Documentary)obi;

Don’t forget to cast.
This is a legal cast. (Why?)

public class Documentary extends Movie {

/** = "obj is a Documentary with the same values
in its fields as this Documentary" */

public boolean equals (Object obj) {

if (! (obj instanceof Documentary) {
return false;

}

Documentary docObj= (Documentary)obj;

return
getTitle () .equals (docObj.getTitle()) &&
getLength () == docObj.getLength() &&

topic.equals (docObj.topic);

What’s in the exam?

Everything you needed to know for Prelim |
Vector / String class, functions

Writing functions

Recursive Functions

Loops: for, while

apparent/real classes, casting, operator
instanceof, function equals

Abstract classes and methods

Let’s capture the essence of animals

/** representation of an animal */

public class Animal {
private int birthDate; // animal’s birth date
private String predator; // predator of this animal
private String prey; // class of animals this hunts

// move the animal to direction..

public void move (..) {

}

// make the animal eat..)

public void eat (..){ ﬁ
#mh

: @y ™ -nfﬂ

- YRadrris

’”‘4

Problems

* Animal is an abstract concept

— Creating an abstract animal doesn’t make sense in the real
world

— Dogs, cats, snakes, birds, lizards, all of which are animals,
must have a way to eat so as to get energy to move

* However...

— Class Animal allows us to create a UFA (unidentified flying
animal), i.e. instance of Animal

— If we extend the class to create a real animal, nothing

prevent us from creating a horse that doesn’t move or eat.

Solutions

How to prevent one from creating a UFA?
— Make class Animal abstract

* Class cannot be instantiated
— How? Put in keyword abstract

How to prevent creation paralyzed dogs or starving sharks?
— Make the methods move and eat abstract

* Method must be overridden
— How? Put in keyword abstract and replace the body with ";"

Making things abstract

/** representation of an animal */

public abstract class Animal{
private int birthDate; // birth date
private String predator; // animal’s predator
private String prey; // What animal hunts

// Move the animal move in direction

public abstract void move(..);

// Make the animal eat..
public abstract void eat (..);

Good Luck!

