
1

CS1110 Prelim 2 14 April 2011

This 90-minute exam has 5 questions (numbered 0..4) worth a total of 100 points. Scan the whole test
before starting. Budget your time wisely. Use the back of these pages if you need more space. You may
separate the pages; we have a stapler at the front of the room.
Question 0 (2 pts). Write your last name, first name, and Cornell NetId, legibly, at the top of each page.

Question 1 (21 pts) Recursion-like. Below is a partial definition of a class BoolExp. An instance of
BoolExp represents a boolean expression. For example, object a1 below represents the expression

 true || (false).
The only method we show is function eval, whose purpose is to evaluate the boolean expression and
return its value. Write the body of eval.

LAST NAME______________________________first name____________________________ Cornell Net id__________

/** An instance represents a boolean expression,
 with no negation (!) and no variables. */
public class BoolExp {
 /** kind is one of the strings give below. With
 each, we say what expression this object is:
 "true" -- the expression is: true
 "false" -- the expression is: false
 "&&" -- the expression is: op1 && op2
 "||" -- the expression is: op1 || op2
 "()" -- the expression is: (op1) */
 private String kind; // if kind is &&, ||, or (), op1
 private BoolExp op1; // is not null. If kind is
 private BoolExp op2; // && or ||, op2 is not null

 /** = the value of this expression. */
 public boolean eval() {

}

a1

eval() BoolExp

kind “||”

op1 a2

op2 a3

a2

eval() BoolExp

kind “true”

op1 null

op2 null

a3

eval() BoolExp

kind “()”

op1 a4

op2 null

a4

eval() BoolExp

kind “false”

op1 null

op2 null

2

Question 2 (21 points) for-loops. Write a loop with initialization that stores the odd values of array seg-
ment b[m..n] in the beginning of the segment. For example, change the array segment

There is no need to swap; just store the odd values in the front. We don’t care what b[i..n] is at the end.
Here are the ground rules. Below, we give a statement that says what to do: the Task. You must
1. Write a postcondition that indicates that the task has been done.
2. Write down here the range of integers (indices) to process: _____________________
3. Write the for-loop with all parts filled in except the repetend.
4. Above the for-loop, write the loop invariant, based on the postcondition.
5. Write initialization (if any).
6. Write the repetend.

Task: Change b[m..n] and store a value in i so that:
 b[m..i-1] contains all the odd values in the original array b[m..n]

initialization:

invariant:

for () {

}

postcondition:

LAST NAME______________________________first name____________________________ Cornell Net id__________

 1 2 4 3 4 1 6 8 9 1 3 1 9 4 1 6 8 9
m n m i n

to

3

Question 3 (21 points) while-loops. Implement the essence of Vector function lastIndexOf: As-
sume Vector v and Object w are already initialized and that k is already declared but not initialized.
Given the precondition below, store a value in k so that the postcondition (also below) is true.

precondition:

postcondition:

Here are the ground rules. Don’t write a whole method. Just write one while-loop with initialization. The
while-loop must use the invariant given below. Do not use a return statement anywhere.
Use function v.get(...) to get the value v[...].

Function lastIndexOf does not test for equality using v[...] == w. It uses function w.equals.
Further, if w is null and some v[i] is null, then v does indeed contain w.

invariant:

LAST NAME______________________________first name____________________________ Cornell Net id__________

v ?
0 v.size()

v ? w is not in here
0 k v.size()

v ? w w is not in here
0 k v.size()

or v w is not in here
 k 0 v.size()

4

Question 4 (35 pts) Methods and OO. At the bottom of page 5 are definitions of three classes: Celes-
tialBody, Planet, and Star.

(a) Below, draw the variables declared in the following sequence of four assignments. Then execute the
sequence. Draw any objects that are created —do not draw the partition for class Object. No room be-
low? Use the back of the previous page or the next page. You may draw Vectors in any reasonable way.

CelestialBody one= new CelestialBody(false, "Moon"); DRAW VARIABLES HERE
Star two= new Star(false, "Sun");
Planet three= new Planet(true, "Earth");
CelestialBody four= three;

(b) Execute the following statements —changing things as required in the objects you drew.
 two.addBody(three);
 three.addMoon(one);
 two.addBody(four);

(c) To the right of each expression below, write its value:

 (1) three instanceof CelestialBody

 (2) four instanceof Star

 (3) three == four

 (4) one.equals(four)

 (5) three.equals(one)

(d) On the back of the previous page, state the two uses of a wrapper class.

CONTINUED ON NEXT PAGE

LAST NAME______________________________first name____________________________ Cornell Net id__________

5

Question 4, continued
(e) Below, implement the body of Planet.equals. If you have to
write a loop, you need not write a loop invariant.
/** = "b is a Planet and has the same name, life property, and
 moons as this Planet" */
public boolean equals(Object b) {

}

LAST NAME______________________________first name____________________________ Cornell Net id__________

/** An instance maintains info about a planet */
public class Planet extends CelestialBody {
 private Vector<CelestialBody> ms; // The moons
 // of the planet, in alphabetical order

 /** Constructor: A Planet with life l, name n,
 and no moons. */
 public Planet(boolean l, String n) { ... }

 /** Add m to this planet's list of moons */
 public void addMoon(CelestialBody m) { ... }

 /** = the moons of this planet */
 public Vector<CelestialBody> getMoons() { ... }

 /** = "b is a Planet with the same name, life
 property, and moons as this Planet */
 public boolean equals(Object b) { ... }
}

/** An instance maintains info about a star */
public class Star extends CelestialBody {
 private Vector<CelestialBody> bs;
 // The bodies that revolve around the star,
 // in alphabetical order

 /** Constructor: Star with life l, name n, and no
 bodies revolving around it. */
 public Star(boolean l, String n) { ... }

 /** Add b to the star's list of orbiting bodies */
 public void addBody(CelestialBody b) { ... }

 /** = a vector of planets orbiting this star */
 public Vector<CelestialBody> getBodies() { ... }
}

/** An instance maintains info about a celestial body */
public class CelestialBody {
 private String name; // Name of the body
 private boolean life; // True if life exists here

 /** Constructor: A Celestial Body with life l, name n*/
 public CelestialBody(boolean l, String n) { ... }

 /** = "this body has life" */
 public boolean hasLife() { ... }

 /** = the name of the body */
 public String getName() { ... }

 /** = “b is a CelestialBody and has the same name
 and life property as this” */
 public boolean equals(Object b) { ... }
}

0 ___________ out of 02

1 ___________ out of 21

2 ___________ out of 21

3 ___________ out of 21

4 ___________ out of 35

Total ________ out of 100

