
1

CS1110 Prelim 1 9 Nov 2010

This 90-minute exam has 5 questions (numbered 0..4) worth a total of 100 points. Scan the whole test
before starting. Budget your time wisely. Use the back of these pages if you need more space. You may
separate the pages; we have a stapler at the front of the room.
Some potentially useful methods appear at the bottom of the this page.
Question 0 (2 pts). Write your last name, first name, and Cornell NetId, legibly, at the top of each page.

Question 1 (25 pts) for-loop. Suppose you have a list of your
friends and another list of your enemies. This question asks
you to make a list of people who are on both lists.
Complete the body of the method given below, to be placed in
a class Person, You must

(1) write the invariant of a for-loop that processes a range of
integers, based on the postcondition R given below,

(2) write the for-loop that processes a range of integers and
provides the correct answers to the four loopy questions
with respect to your invariant.

/** = a list of Persons that appear both in friends and in enemies; if there are no such Persons, the list that
is returned should be empty (it is not null but is a list containing 0 elements).
Precondition: Vectors friends and enemies are not null, neither contains null, and neither contains dupli-
cates. */
public static Vector<Person> frenemies(Vector<Person> friends, Vector<Person> enemies) {

 // invariant:

 // R: fr contains a list of Persons in friends[0..friends.size()-1] that also appear in enemies.
 return fr;
}0

LAST NAME______________________________first name____________________________ Cornell Net id__________

Notes:
1. You have to declare a local variable fr.
2. Use the methods of class Vector given

on the bottom of this page.
3. Assume class Person does not have an
equals method, so p1.equals(p2)
calls the equals function inherited
from class Object.

Potentially useful Vector methods, for v a variable with apparent type Vector.Potentially useful Vector methods, for v a variable with apparent type Vector.Potentially useful Vector methods, for v a variable with apparent type Vector.
Vector() Constructor for an empty Vector —no objects in it

void v.add(p) Append object p to Vector v’s list of objects
int v.size() The length of Vector v’s list of objects
Object v.get(i) Return the object at position i in v
boolean v.contains(ob) = "Vector v's list contains ob, according to method ob.equals"

2

Question 2 (25 pts) Recursion. Suppose class Person contains no public fields and only the following 0

two public methods (bodies omitted):

The purpose of the function specified below is to determine
whether Person startP has a best male friend who has a
best male friend who ... who has a best male friend who is
Person endP. This is illustrated in the diagram to the
right, where the objects of class Person are written as circles and
each arrow denotes the name of the object to which it points.
startP, who is A, has best male friend B, who has best male friend C, who has best male friend D, who
is endP. We could write this path as (startP, B, C, endP) or (A, B, C, D).

A Person can be their own best friend (but need not be).

The recursive function must watch out for the situation
shown to the right. There is a cycle, and the recursive func-
tion won’t terminate if it follows this cycle endlessly. The
purpose of parameter ignore is to contain Person’s that
should not be looked at to prevent getting trapped in a cycle.

/** = "there is a path of male best friends from startP to endP that does not contain a Person in list ig-
nore". (Note: If startP is the same as endP, that counts as a path.)
Precondition: startP, endP, and ignore are not null; startP and endP are male, and startP and endP are not
in ignore.
*/
public static boolean malePathTo(Vector<Person> ignore, Person startP, Person endP) {

/* key recursive insight: if there is a "malePath" (startP, B, ..., endP) where startP and endP are differ-
ent, then there is a "malePath" (B, ..., endP) that does not include startP. */

}

/** = this Person's best male friend (null if none) */
public Person getMBF() {...}

/** = this Person's best female friend (null if none) */
public Person getFBF() {...}

LAST NAME______________________________first name____________________________ Cornell Net id__________

startP endP

A B DC

startP

A B C D

3

Question 3 (20 pts) Methods and OO0

(a) Consider the diagram of two variables and an object, to
the right. Each variable is annotated with its apparent class.
Below are four method calls; circle those that are legal.

 v.m(5) w.m(5) v.p() w.p()

(b) Using variable v, write a legal expression that calls
method p of the object. You may have to use casting.

(c) Methods equals. They say that a person is known by the company they keep. Let's take this adage to 0
heart in writing an equals-like method for class Person.

Assume class Person has exactly two fields, both of type Person: fbf and mbf, holding the person's
best female friend and best male friend, respectively.
Write the body of this method, to be placed in Person:

/** ="p is a Person, with the same best female friend and same best male friend as this person."
Notes: We count best friends that are null as the same (so two Persons who both have no best friends are
viewed as equal). However, this.equalsX(null) is false. */
public boolean equalsX(Object p) {

}

LAST NAME______________________________first name____________________________ Cornell Net id__________

 toString() C()
 m(int) m(int, int)

 a1

 equals(Object)
 toString() Object()

Object

 C

m(int, int)
 p() D(int)

 D

w . a1
 C

v . a1
Object

4

Question 4 (28 pts) Arrays, classes, subclasses. Complete the fol-0
lowing skeletons for three classes: abstract class Mammal and two
subclasses Dog and Platypus of Mammal given on this page and
the next. Assume that platypuses (platypi?) are the only species of
mammals that lay eggs.
Fill in not just method bodies but also incomplete headers, missing
methods (include specifications!), and so forth. Follow any direc-
tions given in the comments in the skeletons.
The statements/expressions given in the box on the right should be
legal (allowed by the compiler). Also, m.getBreed()should be
illegal, since not all mammals have breeds.
You must place methods optimally; for instance, it is a mistake to
place a method in Dog or Platypus that should be in Mammal.
Do not write any methods not called for in this question (for in-
stance, don't write toString functions or a getter for field noises).

/** An instance is a Mammal */ // don't forget to complete the "header" for this class

________________________________ Mammal ____________________ {

 private String[] noises; // list of noises this mammal can make. Cannot be null, can be empty

 /** Constructor: a Mammal making the sounds in noises (which can be empty, but not null). */
 public Mammal(String[] noises) {

 }

 /** = the ith kind of noise this Mammal can make, or "no such noise" if this Mammal makes
 fewer than i noises. Precondition: 1 <= i */

 public _________________ getNoise(int i) {

 // recall: the ith element of an array is stored in entry i-1 (if it exists)

 }

}

LAST NAME______________________________first name____________________________ Cornell Net id__________

For m of type Mammal, d of
type Dog, and p of type
Platypus, these should be
legal:
p.getNoise(1) [= "no such
noise"]
d.getNoise(1) [= "woof"]
d.laysEggs() [= false]
p.laysEggs() [= true]
d.getBreed()
m= p;

5

/** An instance is a purebred dog. */ // Don't forget to fill in the
 // "header" for this class.

________________________ Dog __________________________ {

 private String breed; // breed of this Dog. Cannot be null or "".

// declare a static String array variable named nArr initialized with
// an array containing "woof" and "arf". Use it in the constructor.

 /** Constructor: a new Dog of breed b.
 Precondition: b has length > 0.*/
 public Dog(String b) {

 }
 /** = breed of this dog */

 public _____________________ getBreed() {

 }

}

/** An instance is a Platypus. */ // Don't forget to fill in the "header" for this class.

_________________________Platypus ___________________ {

 private static String[] nArr= {}; // Noises platypi make (they are silent). Use nArr in the constructor.

 /** Constructor: a new platypus */
 public Platypus() {

 }

}
// Note: did you remember to put method layEggs in at least one place?

LAST NAME______________________________first name____________________________ Cornell Net id__________

0 ___________ out of 02

1 ___________ out of 25

2 ___________ out of 25

3 ___________ out of 200

4 ___________ out of 280

Total ________ out of 100

