
CS1110 Prelim 2 Sample Answers (yours may be different) 10 Nov 2009

Question 1a. /** Instances of subclasses of Nuc
represent nucleotides */

public abstract class Nuc {

private char symbol; // a symbol for a nucleotide

/** Constructor: a Nuc with symbol sym.
 Precondition: sym is the character for a

 nucleotide */
public Nuc(char sym) {

symbol= sym;
}

/** = the symbol representing this nucleotide */
public char getSymbol() {

return symbol;
}

/** = "ob is a nucleotide (i.e. a Nuc) and
is complementary to this one." */

public abstract boolean isComplement
 (Object ob);

}

Question 1b. Make a class abstract so that instances
of it cannot be created.

Question 1c. /** an instance is a cytosine nucleotide
(symbol 'C') */

public class CNuc extends Nuc {

/** Constructor: a new cytosine molecule */
public CNuc() {

super('C');
}
/** = "ob is a Nuc whose symbol is 'G' (guanine)"
 (remember C, G are a complementary pair)
public boolean isComplement(Object ob) {

if (!(ob instanceof Nuc)) {
 return false;
}
return ((Nuc)ob).getSymbol() == 'G';

}
}

Question 2a. /** = "b[s..e] is a perfect hinge." */
public static boolean isHinge(Nuc[] b, int s, int e) {

if (e + 1 - s == 0)
return true;

if ((e + 1 - s) % 2 == 1)
return false;

return b[s].isComplement(b[e]) &&
isHinge(b, s+1, e-1);

}

Question 2b.

Question 3. /** = number of dips in b.
 Precondition: b contains at least one element. */
public static int numberOfDips(char[] b) {

int n;

// Set n to the number of dips in b.
n= 0;
// invariant: n = number of dips in b[0..k-1]
for (int k= 1; k < b.length; k= k+1) {

if (b[k-1] > b[k]) {
 n= n+1;
}

}

// post: n = number of dips in b[0..b.length-1]
return n;
}

Question 4a. /** = an array of Nucs corresponding
to the symbols in s.
Precond: The only characters that appear in s are
'C', 'G', 'A', and 'U'. */

public static Nuc[] NucArray(String s) {
Nuc[] b= new Nuc[s.length()];

/* inv: Objects for s[0..i-1] have been placed
in b[0..i-1] */

for (int i= 0; i != s.length(); i= i+1) {
char sym= s.charAt(i);
if (sym == 'C') b[i]= new CNuc();
else if (sym == 'G') b[i]= new GNuc();
else if (sym == 'A') b[i]= new ANuc();
else b[i]= new UNuc();

}

//post: Objects for chars in s have been placed in b
return b;

}

Question 4b. nu may be cast to Object, Nuc, CNuc,
and CNucS —and nothing else.

Since nu’s apparent type is CNuc, upward (and iden-
tical) casts to CNuc, Nuc, and Object will be done
automatically. A cast to CNucS must be done explic-
itly using (CNucS) nu.

0 s 3 e a0 b

 isHinge: 5 Nuc

 s e b

 isHinge: 1 Nuc

