
Final CS1110, Spring 2009 pg. 1
Name (last name ALL CAPS): NetID:

Grades for the final will be posted on the CMS as soon as it is
graded, some time tomorrow. Grades for the course will be-
posted next week. You can look at your final when you return
in the Fall. HAVE A GOOD SUMMER!

Please submit all requests for regrades for things other than
the final BY 8PM TONIGHT. Use the CMS where possible.
Regrades for the prelims will not be considered.

You have 2.5 hours to complete the questions in this exam,
which are numbered 0..8. Please glance through the whole
exam before starting. The exam is worth 100 points.

Question 0 (2 points). Print your name and net id at the top
of each page. Please make them legible.

Question 1 (12 points) Executing method calls. Suppose int
array c contains 3 integers, as shown to the right below.

Execute the method call

AT.testIsp(c);

where class AT is given below. (We have labeled the state-
ments with numbers (e.g. L2), which you can use as program
counters in a frame for a call). Stop executing when you are
ready to execute one of the return statements labeled L5 or L7.

For each call during execution (except the call on println),
draw the frame for the call.

Hint: You will have to draw 2, 3, or 4 frames for calls.

public class AT {
 public static void testIsp(int[] b) {
 L1: System.out.println(isp(b, 0, b.length-1));
 }

 private static boolean isp(int[] b, int h, int k) {
L2: if (k – h >= 1) {
 L3: boolean c= b[h] == b[k];
 L4: if (!c)
 L5: return false;
 L6: return isp(b, h+1, k–1);
}
else {
 L7: return true;
}

 }

}

Question 0. _________ (out of 02)

Question 1. _________ (out of 12)

Question 2. _________ (out of 13)

Question 3. _________ (out of 13)

Question 4. _________ (out of 13)

Question 5. _________ (out of 13)

Question 6. _________ (out of 11)

Question 7. _________ (out of 13)

Question 8. _________ (out of 10)

Total ___________ (out of 100)

c a1

a1

int[]

3
5
3

0
1
2

Final CS1110, Spring 2009 pg. 2
Name (last name ALL CAPS): NetID:

Question 2 (13 points) Recursion and loops. Write a recursive function (defined below) to sum all the
values in its argument, whether the argument is an object of class Integer, an object of class Integer[] (1-
dimensional array), an object of class Integer[][] (2-dimensional array), an object of class Integer[][][] (3-
dimensional array), etc. This is neat! The function is specified below.

To help you, we give you a few ideas.

1. You can use operation instanceof to determine whether the base case holds.

2. If ob is an object of wrapper class Integer, use ob.intValue() to obtain the int wrapped by the object.

3. If you know that parameter obj is an array (of any number of dimensions), you can cast it to type Ob-
ject[] and then use it as an array, meaning you can write a for-loop that processes its elements. How
will you process its elements?

/** = sum of all integer values in obj.
 Precondition: obj is an object of one of the classes: Integer, Integer[], Integer[][], Integer[][][], etc.
 If obj is an array, none of its elements is null.
 Examples: Below, a boldface integer like 4 represents an Integer object that contains that integer.
 For the argument 5, the value 5 is returned.
 For the array {1, 2, 3}, 6 is returned because 1+2+3 = 6.
 For the array {{1, 2, 5}, {3, 4}}, 15 is returned because 1+2+5+3+4 = 15.
 For the array {{{1}, {0, 3}, {}}, {{1,2,3}, {3}}}, 13 is returned because 1+0+3+0+1+2+3+3 = 13.
 */
public static int intDeepSum(Object obj) {

}

Final CS1110, Spring 2009 pg. 3
Name (last name ALL CAPS): NetID:

Question 3 (13 points). Loops and arrays. Write the body of
the method specified below. It can be used to fill in any side of
a triangle with successive values, as shown to the right. So, you
can use it to fill in values of the right side, starting with 0, the
base, in reverse order, starting at 6, or the left side, in reverse
order, starting with 12. In the diagram to the right, xx stands for
a value in which we are not interested.

The upper diagram to the right is a nice way to look at the
triangle, but actually, the elements are in a two-dimensional
array b. In the diagram to the right, the top of the triangle is
b[1][2]. If the top is in b[x][y], the left side of the triangle
always appears in b[x][y], b[x+1][y], b[x+2][y], ….

Your method body should consist of a single loop, with
initialization. We have given the invariant for the loop, because
with the invariant, developing the loop should be easy. Your
loop must use the invariant. It should refer only to the variables
mentioned in the invariant. Do not use or declare any other
variables. Note that r and c will have to be changed in the repetend.

/** Store integers v, v+1, ... , v+n-1 into elements of b starting at b[r][c].
 If direction = 1, store them in b[r][c], b[r+1][c+1], b[r+2][c+2], ….
 If direction = 0, store them in b[r][c], b[r][c-1], b[r][c-2], ….
 If direction = -1, store them in b[r][c], b[r-1][c],b [r-2][c], ….
 Precondition: b is big enough to contain the length-n triangle side under consideration. */
public static void fillRow(int[][] b, int r, int c, int n, int direction, int v)

 // invariant: The first k values, v, v+1, …, v+k-1, have been placed in the designated elements of b.
 The next value to place, which is v+k, should be placed in b[r][c].

 for (; ;) {

 }
 // Postcondition: the n values v, v+1, v+2, …v+n-1 have been placed appropriately in b

}

 00
 17 01
 16 xx 02
 15 xx xx 03
 14 xx xx xx 04
 13 xx xx xx xx 05
12 11 10 09 08 07 06

xx xx xx
xx xx 00
xx xx 17 01
xx xx 16 xx 02
xx xx 15 xx xx 03
xx xx 14 xx xx xx 04
xx xx 13 xx xx xx xx 05
xx xx 12 11 10 09 08 07 06

Final CS1110, Spring 2009 pg. 4
Name (last name ALL CAPS): NetID:

Question 4 (13 points). Subclasses. A Vector<Integer> v
contains a list of objects of class Integer, e.g. v might be [8, 3,
5]. Here the boldface numbers indicate objects of class Integer
that wrap (contain) the numbers.

Below, write a class Ring that is an extension of class Vector
<Integer> in which a list like [8, 3, 5] is handled as a ring
instead of a list. This means simply that the list has no end: the first
element follows the last. Thus, for ring r containing [8, 3, 5],
r.get(3) is 8, r.get(4) is 3, etc. Also, r.get(6) is 8.

Subclass Ring must have the following methods, with
appropriate specifications. Write only these methods.

1. Ring has a constructor with no parameters; it creates a ring with
one value in it, 0.

2. Ring has a constructor with an int parameter n; it creates a ring
consisting of the digits of n. For example, new Ring(643)
constructs the ring [6, 4, 3]. Precondition: n>=0. Note that if
n=0, the ring should contain one value: 0.

3. Method get(i) of Vector<Integer> is overridden by
Ring. The restriction on i is changed to i>=0. Whatever value
of i is given, the notion of wraparound is used to determine the
element of the ring to be accessed, as discussed above.

Methods in class Vector<Integer>
/** Constructor: an empty Vector */
public Vector<Integer>()

/** = number of elements in Vector */
public int size()

/** Append x to Vector’s end*/
public boolean add(Integer x)

/** = element i.
 Precondition: 0 <= i < size() */
public Integer get(int i)

/** Set element i of the Vector to x
and return the element initially
there*/
public Integer set(int i, Integer x)

/** a representation of this list, in the
form "[e0, e1, e2, …, en]" where the
ei are the elements, and adjacent pairs
are separated by ",". */
public String toString()

Assume this method is also in class
Ring. You don’t have to write it, but
you can use it.
/** Store the digits of n in v, with
 most significant first.
 If n = 0, v will be empty.
 Pre: v not null and is empty. */
public static void putIn
 (Vector<Integer> v, int n)

Final CS1110, Spring 2009 pg. 5
Name (last name ALL CAPS): NetID:

Question 5 (13 points). Classes. For our purposes, a repeating deci-
mal is a number n in the range 0<=n<1 that can be written in the
form of a non-repeating part followed by a repeating part. For exam-
ple, ¼ is .25000000… Here, the non-repeating part is 25 and the
repeating part is 0. Here’s a nice representation of this number: 25[0].
The table to the right gives more examples.

Such repeating decimals are also called rational numbers.

Write a class RepeatingDecimal that implements repeating
decimals in a way that makes it easy to get at (and perhaps change)
any digit of such a repeating decimal. For example, if r is an object of
the class that contains 25[0], then function call r.digit(0) = 2,
r.digit(1) = 5, and r.digit(i) = 0 for i>1.

Here are the rules for you to follow.

1. Put in class invariants and specify all methods.

2. Keep the non-repeating part in a Vector<Integer>, the repeating part in a Ring (see question 4).

3. Write a constructor that is given the non-repeating part and repeating parts as ints. You don’t need a
loop or anything like that; class Ring contains the methods you need.

4. Function digit(int i) should return the digit of the repeating decimal at position i.

5. Function toString() gives the nice representation of this number, e.g. "24[567] " for the first ex-
ample in the table above. You can write this function without loops if you use the toString func-
tion in Vector and remember that s.replaceAll(s1, s2) replaces all occurrences of String
s1in s by String s2.

number: .24567567…
nonrepeating part: 24
repeating part 567
representation 24[567]

number: .74333333…
nonrepeating part: 74
repeating part 3
representation 74[3]

number: . 33333…
nonrepeating part:
repeating part 3
representation [3]

Final CS1110, Spring 2009 pg. 6
Name (last name ALL CAPS): NetID:

Question 6 (11 points). Exception handling. (a) On the back of the previous page, write a class defini-
tion for a class OverflowException, whose instances may be thrown.

(b) An instance of the class declared below maintains a list of prime numbers in an array. Complete, in
this order, the bodies of procedures check, add, and addPrime. Note the comment in the body of pro-
cedure addPrime, which explains how you should write the body.

/** An instance maintains a list of prime numbers, with duplicates allowed */
public class Primes {
 public static final int MAX= 20; // max number of primes allowed

 private int[] plist= new int[MAX]; // List of prime numbers is in p[0..n-1].
 private int n= 0; // 0 <= n <= MAX

 /** Throw an IllegalArgumentException with a suitable message, if p is not a prime */
 private static void check(int p) {
 if (p < 2)

 __;

 // throw an exception if some integer in 2..p-1 divides p
 // invariant: no number in 0..k-1 divides p

 for (int k= ____________; _______________; ____________________) {
 if (p%k == 0)

 ___;
 }
 }

 /** Constructor: an instance with an empty list of primes */
 public Primes() {}

 /** Add prime p to the list.
 Throw an IllegalArgumentException with suitable message if p is not a prime.
 Throw an OverflowException if there is no room for p. */
 public void add(int p) {

 }

 /** If p is a prime, add it to the list; otherwise, print "Mistake: p is not a prime."
 Throw an OverflowException if there is no room for this prime. */
 public void addPrime(int p) {
 // This body should NOT use an if-statement. Instead, use a single try-catch statement */

 }
}

Final CS1110, Spring 2009 pg. 7
Name (last name ALL CAPS): NetID:

Question 7 (13 points). Algorithms. Write a function that implements algorithm partition, as given be-
low. Note that it partitions b[p..q]. You must: (1) Write the precondition, as a picture, right under the first
line. (2) Write the postcondition, as a picture, under the precondition. (3) Say as part of the specification
what value is returned. (4) Write the invariant, as a picture, in the place provided. (5) Write the loop, with
its initialization before the invariant and the loop after the invariant. (6) Write the return statement.

/** Algorithm partition, on an array segment b[p..q]

 precondition:

 postcondition:

 what is returned?
*/
public static int partition(int[] b, int p, int q) {

 /** invariant:

 */

}

Final CS1110, Spring 2009 pg. 8
Name (last name ALL CAPS): NetID:

Question 8 (10 points) Miscellaneous.
(a) Name the layout managers associated with objects of class JFrame and Box and explain how compo-
nents are laid out with each of them.

(b) What is the purpose of making a class abstract, and how do you make a class abstract?

(c) What is the purpose of making a method abstract, and how do you make a method abstract?

