
1	

1	

Interfaces
Reading for today: Sec. 12.1 and corresponding ProgramLive material.
Also, compare with previous discussions of abstract classes (Sec. 4.7).

Final exam: Period B: Thursday, 13 May, 9:00-11:30AM, Barton East
Contact mwitlox@cs.cornell.edu ASAP regarding conflicts. Explain the
nature of the conflict in detail (e.g. which other exam it conflicts with).

Can extend only one class	

public class C extends C1, C2 { … }	

2	

public class C1 {	

 public int m() {	

 return 2;	

 }	

 public int p() {	

 return …;	

 } 	

}	

public class C2 {	

 public int m() {	

 return 3;	

 }	

 public int q() {	

 return …;	

 }	

}	

if we allow multiple inheritance, which m is used?	

Can extend only one class	

public class C extends C1, C2 { … }	

3	

public abstract class C1 {	

 public abstract int m();	

 public abstract int p();	

}	

public abstract class C2 {	

 public abstract int m();	

 public abstract int q();	

}	

But this would be OK, because the ���
bodies of the methods are not given!	

Nevertheless, not allowed	

Use an “interface”	

public class C implements C1, C2 { … }	

4	

public interface C1 {	

 int m();	

 int p();	

}	

public interface C2 {	

 int m();	

 int q();	

}	

Methods declared in an interface must be abstract!	

No need for “abstract”, automatically public	

5	

A use of interfaces:
remove need for duplicate code for special cases of a general approach

Example: sorting is general, but the notion of “<“ may change:

Recommender systems should sort products (movies, songs …) by
quality or by how much you, personally, would like them.

 Travel sites should sort flights by price, departure, etc.

Don’t want to write many sort procedures:
 public void sort(int[] arr) {…}
 public void sort(double[] arr) {…}
 public void sort(Movie[] arr) {…}
 public void sort(Flight[] arr) {…}

Use an interface to enforce the existence of a method that does the
comparison of two objects

6	

Interface java.util.Comparable

/** Comparable requires method compareTo*/
public interface Comparable {
 /** = a negative integer if this object < c,
 = 0 if this object = c,
 = a positive integer if this object > c.
 Throw a ClassCastException if c cannot
 be cast to the class of this object. */
 int compareTo(Object c);

}

Classes that
implement
Comparable	

Boolean	

Byte	

Double	

Integer	

…	

String	

BigDecimal	

BigInteger	

Calendar	

Time	

Timestamp	

…	

abstract method: body replaced by ;	

Every class that implements Comparable must
override compareTo(Object).	

2	

7	

Using an interface as a type

/** Swap b[i] and b[j] to put larger in b[j] */
public static void swap(int [] b, int i, int j) {

}

if (b[j].compareTo(b[i]) < 0) {
 Comparable temp= b[i];
 b[i]= b[j];
 b[j]= temp;
}

Comparable	

Polymorphism: the quality
or state of existing in or
assuming different forms

This parametric polymorphism allows us to use swap to do its
job on any array whose elements implement Comparable.

8	

/** An instance is a movie and what critics thought of it. */
public class Movie implements Comparable {
 public String name; /** movie name. */
 private int[10] ratings; /**ratings from 10 critics. */
 private int final NOTSEEN= 0; /** rating if not seen by given critic */
 /** Actual ratings are: 1, 2, 3, 4, or 5 */

 /** = -1, 0, or +1 if this Movie’s name comes alphabetically before,
 at, or after c.
 Throw a ClassCastException if c cannot be cast to Movie.*/
 public int compareTo(Object c) {
 if (!(c instanceof Movie))
 throw new ClassCastException("argument is not a Movie");

 // Note: String implements Comparable
 Movie cm= (Movie) c;
 return this.name.compareTo(cm.name);

}

class will contain other methods	

Another example: Listening to a mouse click (or other
object-appropriate action)

9	

Defined in package java.awt.event	

public interface ActionListener extends Eventlistener {	

 /** Called when action occurs. */	

 public void actionPerformed(ActionEvent e);	

}	

/** An instance has two buttons. Exactly one is always enabled. */
 public class ButtonDemo1 extends JFrame
 implements ActionListener {
 /** Process a click of a button */
 public void actionPerformed (ActionEvent e) {
 boolean b= eastB.isEnabled();
 eastB.setEnabled(!b);
 westB.setEnabled(b);
 }
}

10	

Declaring your own interfaces

/** comment*/
public interface <interface-name> {
 /** method spec for function*/
 int compareTo(…);

 /** method spec for procedure */
 void doSomething(…);

 /** explanation of constant x*/
 int x= 7;

}
Every field is implicitly public, static, and final.
You can put these modifiers on them if you wish.

Methods are implicitly public.
You can put the modifier on if
you wish.

Use “;” instead of a body

11	

A class can implement several interfaces

/** comment*/
public class C implements Inter1, Inter2, Inter3{
 …
}

Example: a recommendation system that returns all movies that
satisfy some minimum similarity to one of your favorites.

 Need to sort and to measure similarity (a general task worthy
of an interface).

The class must override all methods declared in
interfaces Inter1, Inter2, and Inter3.

