
1	

CS1110 22 April 2010 Ragged arrays	

Reading for today: sec. 9.3.
Reading for next time: chapter 16, applications and applets

The most frequently asked question: what kind of “working together” is allowed?	

•  principle from the website: don’t use unauthorized assistance, and
don’t give fraudulent assistance.	

•  principle from the website: You [meaning you and your partner, if you have
grouped on CMS] may discuss work with other students. However,
cooperation should never involve other students possessing a copy of all, or a
portion of, your work regardless of format.	

Some rules of thumb: 	

•  Don’t look at any of other people’s code.	

•  Don’t show other people any of your code.	

•  OK to talk about algorithms you developed, but not at the level of essentially
verbalizing code. 	

1.	
 Slow	
 to	
 reveal!	

/** Extract and return … */
public String reveal() {
 …

 int p= 4;
 String result= "";

 // inv: All hidden chars before
 // pixel p are in result[0..k-1]
 for (int k= 0; k < len; k= k+1) {
 result= result +
 (char) (getHidden(p));
 p= p+1;
 }

 return result;
}

2

/** Extract and return … */
public String reveal() {
 …

 int p= 4;
 char[] result= new char[len];

 // inv: All hidden chars before
 // pixel p are in result[0..k-1]
 for (int k= 0; k < len; k= k+1) {
 result[k]=
 (char) (getHidden(p));
 p= p+1;
 }

 return new String(result);
}

gives	
 n2	

algorithm	
 (n	
 is	

message	
 length)	

linear	
 algorithm	

3	

Some mysteries: an odd asymmetry, and strange toString output (see demo).	

Type of d is int[][] 	

 (“int array array”/ “an array of int arrays”)	

To declare variable d:	

 int d[][];	

To create a new array and assign it to d:	

 d= new int[5][4]; 	

or, using an array initializer, 	

 d= new int[][]{ {5,4,7,3}, {4,8,9,7}, {5,1,2,3}, {4,1,2,9}, {6,7,8,0} };	

5 4 7 3	

4 8 9 7	

5 1 2 3	

4 1 2 9 	

6 7 8 0	

d	

0 1 2 3 	

0	

1	

4	

2	

3	

Review of two-dimensional arrays 	

Number of rows of d: d.length	

Number of columns in row r of d: d[r].length	

4	

How multi-dimensional arrays are stored: arrays of arrays ���

int b[][]= new int[][]{ {9, 6, 4}, {5, 7, 7} };	

b a0	

 a0	

r0	

9	

6	

4	

0
r1	

5	

7	

7	

0
r0	

r1	

0	

1	

b holds the name of a one-dimensional array object with
b.length elements; its elements are the names of 1D arrays.	

b[i] holds the name of a 1D array of ints of length b[i].length 	

1	

 1	

2	

 2	

java.util.Arrays.deepToString recursively creates an appropriate String.	

9 6 4	

5 7 7	

5	

Ragged arrays: rows have different lengths ���

b a0	

 a0	

r0	

17	

13	

19	

0
r1	

28	

95	

0
r0	

r1	

0	

1	

int[][] b; Declare variable b of type int[][] 	

b= new int[2][] Create a 1-D array of length 2 and store its	

	

name in b. Its elements have type int[] (and start as null).	

b[0]= new int[] {17, 13, 19}; Create int array, store its name
	

in b[0].	

b[1]= new int[] {28, 95}; Create int array, store its name in b[1].	

1	

2	

1	

6	

Large collections of association data abound, but often, many possible
associations have the default value, so the data is sparse.

 Netflix data: (user, movie, score): 480K × 18K = 8.6B possible
scores to track, but there are only (!) 100M actual scores.

 GroupLens data (freely distributed by U. Minn): the small set has
943×1682= 1.5M possibilities, but only 100K actual scores.

Application: recommender systems ���

This seems to suggest a 2-D, user-by-movie array.	

How might Netflix, Amazon, etc. use this kind of association data to
generate recommendations?

1.  Represent each user by an array of movie ratings
2.  Find similar users according to the similarity of the corresponding

arrays, and report their favorite movies

7	

 GroupLens data (freely distributed by U. Minn): the small set has
943×1682= 1.5M possibilities, but only 100K actual scores.

Main idea:
 For each user, DON’T store an int array of length 1682;
 store a movie-sorted array of objects corresponding to the ratings for

just the movies that user saw (avg. length: 59!).

 This means a 2-D ragged user/movie array.

Another very useful technique (among many more substantive ones;
take more CS courses!): map the movie/rater names to ints, b/c they
can be meaningful array indices.

Recommender-system application (cont.)���

8	

Pascal’s Triangle���

 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1 	

The first and last entries on each row are 1.	

Each other entry is the sum of the two entries above it	

row r has r+1 values.	

0	

1	

2	

3	

4	

5	

…

9	

Pascal’s Triangle��� 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1 	

Entry p[i][j] is the number of ways i elements ���
can be chosen from a set of size j !	

p[i][j] = “i choose j” = 	

0	

1	

2	

3	

4	

5	

…

()	

i���
j	

recursive formula:���
 for 0 < i < j, p[i][j] = p[i–1][j–1] + p[i–1][j]	

10	

Pascal’s Triangle��� 1

 1 1

 1 2 1

 1 3 3 1

 1 4 6 4 1

 1 5 10 10 5 1 	

Binomial theorem: Row r gives the coefficients of (x + y) r	

(x + y)2 = 1x2 + 2xy + 1y2	

(x + y)3 = 1x3 + 3x2y + 3xy2 + 1y3	

(x + y)r = ∑ (k choose r) xkyr-k���
 0 ≤ k ≤ r	

0	

1	

2	

3	

4	

5	

11	

Function to compute first r rows of Pascal’s Triangle in a ragged array���

/** Return ragged array of first n rows of Pascal’s triangle.	

 Precondition: 0 ≤ n */	

public static int[][] pascalTriangle(int n) {	

 int[][] b= new int[n][]; // First n rows of Pascal's triangle	

 // invariant: rows 0..i-1 have been created	

 for (int i= 0; i != b.length; i= i+1) {	

 // Create row i of Pascal's triangle	

 b[i]= new int[i+1];	

 // Calculate row i of Pascal's triangle	

 b[i][0]= 1; 	

 // invariant b[i][0..j-1] have been created	

 for (int j= 1; j < i; j= j+1) {	

 b[i][j]= b[i-1][j-1] + b[i-1][j];	

 }	

 b[i][i]= 1;	

 }	

 return b;	

 }	

