
3/28/10	

1	

1	

CS1110 12 Mar 2009 Arrays. Reading: Secs 8.1, 8.2, 8.3	

Listen to the following lectures on loops on your Plive CD. They are only
2-3 minutes long, and each has an insightful message. 	

1.  The 3 lectures on Lesson page 7-6 —read the whole page.	

2.  The 4 lectures in Lesson page 7-5.	

Computational simplicity	

Most of us don’t write perfect essays in one pass, and coding is the same:
writing requires revising; programming requires revising.	

If you are writing too much code —it gets longer and longer, with no end in
sight: stop and look for a better way.	

If your code is getting convoluted and you have trouble understanding it:
stop and look for a better way.	

Learn to keep things simple, to solve problems in simple ways. This
sometimes requires a different way of thinking.	

We are trying to teach not just Java but how to think about problem solving.	

A key point is to break a problem up into several pieces and do each piece in
isolation, without thinking about the rest of them. Our methodology for
developing a loop does just that.	

Zune error���
http://tinyurl.com/9b4hmy	

2	

/* day contains the number of days	

 since ORIGINYEAR (1 Jan 1980)
*/	

/* Set year to current year and day to ���
 current day of current year */	

year = ORIGINYEAR; /* = 1980 */	

while (day > 365) {	

 if (IsLeapYear(year)) {	

 if (day > 366) {	

 	

day= day – 366;	

 	

year= year + 1; 	

 }	

 } else {	

 day= day – 365;	

 year= year + 1;	

 }	

} 	

Zune clock code keeps
time in seconds since
beginning of 1980. It

calculates current day
and year from it. 	

Example	

year day	

1980 738 	

1981 372	

1982 7	

On 31 Dec 2008, the Zune
stopped working. Anger!	

On 1 Jan 2009 it worked.	

Does each iteration
make progress toward

termination?	

Not if day == 366!!	

Understanding the pieces of a loop	

3	

while () {	

}	

// R: (result assertion)	

Init	

Cond	

Repetend	

 1. How does the initialization
make inv true?	

2. Does inv together with !Cond
tell us that R is true?	

3. Does Repetend make progress?	

4. Does the repetend keep inv true	

When developing the loop, how do
we write the three pieces?	

When understanding a loop that
someone gives us, how do we know
the pieces are right?	

// invariant	

invariant: a definition of the
relationship between the
variables. Holds before/after
each iteration.	

4	

Array: object. Can hold a fixed number of values
of the same type. Array contains 4 int values.	

 5	

7	

4	

-2	

a0	

Basic form of a declaration:	

 <type> <variable-name> ;	

A declaration of x.	

Does not create array, it only declares x.
x’s initial value is null.	

int[] x ;	

0	

1	

2	

3	

Elements of array are numbered: 0, 1, 2, …, x.length–1;���

The type of the array:	

 int[]	

Variable contains name of the array.	

 x a0	

 int[]	

Make everything as simple as possible, but no simpler. Einstein	

5	

Notes on array length 	

Array length: an instance field of the array.	

This is why we write x.length, not x.length()	

 5	

7	

4	

-2	

a0	

0	

1	

2	

3	

Length field is final: cannot be changed.	

Length remains the same once the array has been
created.	

We omit it in the rest of the pictures.	

x a0	

 int[]	

length 4	

The length is not part of the array type.	

The type is int[]	

An array variable can be assigned arrays of different lengths.	

6	

Arrays	

 int[] x ;	

 x	

 null	

int[]	

0	

0	

0	

0	

a0	

x= new int[4];	

 0	

1	

2	

3	

Create array object of length 4,
store its name in x	

x	

 a0	

int[]	

-4	

0	

6	

-8	

a0	

0	

1	

2	

3	

Assign 2*x[0], i.e. -8, to x[3]���
Assign 6 to x[2] 	

int k= 3;	

x[k]= 2* x[0];	

x[k-1]= 6; 	

x[2]= 5; 	

x[0]= -4;	

 -4	

0	

5	

0	

a0	

0	

1	

2	

3	

Assign 5 to array element 2 and ���
-4 to array element 0	

x[2] is a reference to element
number 2 of array x	

3/28/10	

2	

7	

Difference between Vector and array	

Declaration: int[] a; Vector v;	

Elements of a: int values Elements of v: any Objects	

Array always has n elements Number of elements can change	

Creation: a= new int[n]; v= new Vector(); 	

Reference: a[e] v.get(e)	

Change element: a[e]= e1; v.set(e, e1);	

Array locations a[0], a[1], … in
successive locations in memory.
Access takes same time no matter
which one you reference.	

Elements all the same type (a
primitive type or class type)	

Can’t tell how Vectors are stored in
memory. Referencing and changing
elements done through method calls	

Elements of any Object type (but
not a primitive type). Casting may
be necessary when an element is
retrieved.	

 8	

Array initializers	

Instead of 	

	

int[] c= new int[5];	

	

c[0]= 5; c[1]= 4; c[2]= 7; c[3]= 6; c[4]= 5;	

Use an array initializer:	

	

int[] c= new int[] {5, 4, 7, 6, 5};	

5	

4	

7	

6	

5	

a0	

array initializer: gives values to be in the
array initially. Values must have the same
type, in this case, int. Length of the array
is the number of values in the list	

No expression
between
brackets [].	

(can omit this)	

Computer science has its field called computational complexity;	

mine is called computational simplicity. Gries 	

9	

Use of an array initializer	

public class D {	

 public static final String[] months= new String[]{"January", "February",	

 "March", "April", "May", "June", "July", "August",	

 "September", "October", "November", "December"};	

 /** = the month, given its number m	

 Precondition: 1 <= m <= 12 */	

 public static String theMonth(int m) {	

 return months[m–1];	

 }	

}	

Variable months is:���
static; object assigned to it will be created only once.
public: can be seen outside class D.���
final: it cannot be changed.	

Months[m–1] is ���
returned, since	

 months[0] = “January”,
months[1] = “February”, ���

…	

b c is not here c 	

h i k 	

10	

Linear search	

public class D {	

 /** = index of first occurrence of c in b[h..]	

	

 Precondition: c is guaranteed to be in b[h..] */	

 public static int findFirst (int c, int[] b, int h) {	

 } 	

}	

Remember	

h..h-1 is the
empty range	

// Store in i the index of first c in b[h..]	

int i ;	

// b[i] = c and c is not in b[h..i-1]	

return i;	

// invariant: c is not in b[h..i-1]	

while () {	

} 	

= h 	

b[i] != c	

i= i + 1;	

Loopy questions:	

1. initialization?	

2. loop condition?	

3. Progress?	

4. Keep invariant true?	

b c is not here c is in here	

h i k 	

invariant	

11	

/** = a random int in 0..p.length-1, assuming p.length > 0.	

 The (non-zero) prob of int i is given by p[i].*/	

public static int roll(double[] p) {	

	

double r= Math.random(); // r in [0,1)	

}	

0 p[0] p[0]+p[1] 1 	

/** Store in i the segment number in which r falls. */	

int i ;	

// r is in segment i	

return i;	

// inv: r is not in segments looked at (segments 0..i-1)	

while () {	

	

 	

	

}	

1. init	

2. condition	

3. progress	

4. invariant true	

= 0	

r not in segment i	

i= i + 1;	

// and iEnd is the end of (just after) segment i 	

double iEnd= p[0];	

r >= iEnd	

iEnd= iEnd + p[i+1];	

It’s a
linear

search!	

12	

a b	

Procedure swap	

public class D {	

 /** = Swap x and y */	

 public static void swap (int x, int y) {	

 int temp= x;	

 x= y;	

 y= temp;	

 }	

}	

….	

 swap(a, b);	

5	

 3	

A call will NOT swap a and b.
Parameters x and y are initialized to
the values of a and b, and thereafter,
there is no way to change a and b.	

swap: 1	

 ?	

x y	

temp	

5	

 3	

?	

frame for call just after
frame created and args

assigned to pars:	

3/28/10	

3	

13	

Procedure swap	

5	

4	

7	

6	

5	

a0	

c	

 a0	

public class D {	

 /** = Swap b[h] and b[k] */	

 public static void swap (int[] b, int h, int k) {	

 int temp= b[h];	

 b[h]= b[k];	

 b[k]= temp;	

 }	

}	

….	

 swap(c, 3, 4);	

Does swap b[h] and b
[k], because parameter
b contains name of the

array.	

swap: 1	

 ?	

b h	

temp	

a0	

 3	

?	

frame for
call just
after frame
is created.	

k	

 4	

