3/28/10

CS1110 12 Mar 2009 Arrays. Reading: Secs 8.1,8.2,8.3

Listen to the following lectures on loops on your Plive CD. They are only
2-3 minutes long, and each has an insightful message.

1. The 3 lectures on Lesson page 7-6 —read the whole page.

2. The 4 lectures in Lesson page 7-5.

Computational simplicity

Most of us don’t write perfect essays in one pass, and coding is the same:
writing requires revising; programming requires revising.

If you are writing too much code —it gets longer and longer, with no end in
sight: stop and look for a better way.

If your code is getting convoluted and you have trouble understanding it:
stop and look for a better way.

Learn to keep things simple, to solve problems in simple ways. This
sometimes requires a different way of thinking.

We are trying to teach not just Java but how to think about problem solving.

A key point is to break a problem up into several pieces and do each piece in
isolation, without thinking about the rest of them. Our methodology for

developing a loop does just that. 1

/* day contains the number of days Zune error
since ORIGINYEAR (1 Jan 1980) http://tinyurl.com/9b4hmy

*/
/% Set year to current year and day to | On 31 Dec 2008, the Zune

current day of current year */ stopped working. Anger!
year = ORIGINYEAR; /* = 1980 */ On 1 Jan 2009 it worked.

Zune clock code keeps
time in seconds since
beginning of 1980. It
calculates current day

while (day > 365) {
if (IsLeapYear(year)) {
if (day > 366) {

day= day — 366; .
year= year + 1; and year from it.
} . . Example
1 else { Does each iteration year  day
day= day — 365; make progress toward 1980 738
year= year + 1; termination? 1981 372
} Not if day == 366!! 1982 7
} 2

Understanding the pieces of a loop
@ ‘When developing the loop, how do

we write the three pieces?
‘When understanding a loop that
someone gives us, how do we know

. the pieces are right?
1. How does the initialization

} ) make inv true?
/I R: (result assertion) 2. Does inv together with !Cond
tell us that R is true?

// invariant

invariant: a definition of the
relationship between the
variables. Holds before/after
each iteration.

3. Does Repetend make progress?
4. Does the repetend keep inv true

Array: object. Can hold a fixed number of values a0

of the same type. Array contains 4 int values. 0 5

The type of the array: ! 7
. 20 4
int[]

. . 3 -2
Variable contains name of the array. X i nt[]

Basic form of a declaration:
<type> <variable-name> ;
A declaration of x. int[] x;

Does not create array, it only declares x.
X’s initial value is null.

Elements of array are numbered: 0, 1,2, ..., x.length—1;

Notes on array length a0
Array length: an instance field of the array. length| 4]
This is why we write x.length, not x.length( ) 0] 5

1 7
Length field is final: cannot be changed. 2 4
Length remains the same once the array has been 3] 2
created.

‘We omit it in the rest of the pictures.

The length is not part of the array type.
The type is int[]

An array variable can be assigned arrays of different lengths.

Make everything as simple as possible, but no simpler. Einstein 4
i ; Arr
int[] x ; intl] ays
a0

x=new int[4]; Create array object of length 4, 0 0

store its name in x 1 0

2 0

x 3o

int[]

x[21=5; Assign 5 to array element 2 and a0

-4 to array element 0 0 -4
x[0]=-4;
1 0
x[2] is a reference to element 2 5
number 2 of array x 3 0

int k= 3; 7\

x[k]= 2% x[0];  Assign2#x[0]. ie.-8,t0 x[3] 0 -4

. Assign 6 to x[2] 1 0

x[k-1]= 6; e
I




Difference between Vector and array
Declaration: int[] a; Vector v;
Elements of a: int values Elements of v: any Objects

Creation:  a= new int[n]; v=new Vector();

Array always has n elements Number of el can change
Reference: ale] v.get(e)
Change element: ale]=el; v.set(e, el);
Array locations a[0], a[1], ... in Can’t tell how Vectors are stored in
successive locations in memory. memory. Referencing and changing

Access takes same time no matter ~elements done through method calls

hichuEouEEercey Elements of any Object type (but

not a primitive type). Casting may
be necessary when an element is
retrieved.

Elements all the same type (a
primitive type or class type)

3/28/10

Array initializers
Instead of
a0
int[] c= new int[5]; =
c[0]=5; c[1]=4; c[2]=7; c[3]=6; c[4]=5;

Use an array initializer:
int[] c=new int[ ] {5,4,7,6,5};

j

No expression | | array initializer: gives values to be in the
between array initially. Values must have the same
brackets [ ]. type, in this case, int. Length of the array
is the number of values in the list

v o[ |~ |w

(can omit this)

Computer science has its field called computational complexity;
mine is called computational simplicity. Gries

Use of an array initializer

public class D {
public static final String[] months= new String[]{"January", "February",
"March", "April", "May", "June", "July", " August",
"September", "October", "November", "December"};

/** = the month, given its number m
Precondition: 1 <=m <= 12 */
public static String theMonth(int m) {

return months[m-1];

Months[m—1] is
returned, since

months[0] = “January”,

public class D {
/** = index of first occurrence of ¢ in b[h..]
Precondition: ¢ is guaranteed to be in b[h..] */
public static int findFirst (int c, int[] b, int h) {
// Store in i the index of first ¢ in b[h..]
inti= h;
// invariant: ¢ is not in b[h..i-1]
while ( b[i] I=c) { Loopy questions:
i= i+ 1; 1. initialization?
2. loop condition?
. . . . 3. Progress?
//'bli] = ¢ and c is not in b[h..i-1] 4. Keep invariant true?
return i;

Linear search

Remember

h..h-1is the
empty range

}
Y invariant
h i k
‘ b ‘ c is not here c is in here

h i k
b | cis not here ‘c‘

10

} months[1] = “February”,
}
Variable months is:
static; object assigned to it will be created only once.
public: can be seen outside class D.
final: it cannot be changed.
9
/** = a random int in 0..p.length-1, assuming p.length > 0. 5
BN - It’s a
The (non-zero) prob of int i is given by p[i].*/ li
public static int roll(double[] p) { me:l;
double r= Math.random(); // r in [0,1) Searchy
/*#* Store in i the segment number in which r falls. */
inti =0; double iEnd= p[0];
//'inv: 1 is not in segments looked at (segments 0..i-1)
A and iEnd is the end of (just after) segment i
while ( -notin-segmenti-) { 1. init
r>=iEnd 2. condition
iEnd=iEnd + p[i+1]; 3. progress
i=i+1; 4. invariant true
}
// 1 is in segment i (l) r[O] r[0]+p[1] 1|

return i; | | | |

} 11

Procedure swap
public class D {
/** = Swap x and y */
public static void swap (int x, int y) {

int temp= x;
X=Yy; A call will NOT swap a and b.
y=temp; Parameters x and y are initialized to
} the values of a and b, and thereafter,
} there is no way to change a and b.

a b
swap(a, b); [swap: 1] ?

frame for call just after
frame created and args y

assigned to pars:




public class D {

Procedure swap

/** = Swap b[h] and b[k] */
public static void swap (int[] b, int h, int k) {

Does swap b[h] and b
[k], because parameter
b contains name of the

int temp= b[h];

blh]=b[k];
b[k]= temp;
¥
}
ms.wap(c,3,4); ¢
swap: 1 ?
b h
K

frame for
call just
after frame
is created.

array.

[ ]

S0 K-\ ST (N Y

3/28/10



