
1	

1	

CS1110 2 Mar 2010���
More on Recursion	

We develop recursive functions and���
look at execution of recursive functions 	

Study Sect 15.1, p. 415. Watch activity 15-2.1 on
the CD. In DrJava, write and test as many of the
self-review exercises as you can (disregard those
that deal with arrays).	

2	

. 	

. 	

. 	

. 	

. 	

. 	

. 	

. 	

while there is room	

 A draws or ;	

 B draws or ;	

A wants to get a solid closed curve. 	

B wants to stop A from getting a solid
closed curve.	

Who can win? What strategy to use?	

. 	

. 	

. 	

. 	

. 	

. 	

. 	

Board can be any size: m by n
dots, with m > 0, n > 0	

A won the game to the right
because there is a solid closed
curve.	

A game	

A and B
alternate

moves	

3	

Announcements

• Bring iclickers on Thursday. They will be used

• A3 is graded. Request a regrade ONLY on the CMS. You
must explain what you think was graded unfairly or wrong

4	

/** = non-negative n, with commas every 3 digits ���
 e.g. commafy(5341267) = “5,341,267” */	

public static String commafy(int n) {	

}	

What is the base case?	

A: 0..1	

B: 0..9	

C: 0..99	

D: 0..999	

E: 0..9999	

5	

Executing
recursive
function

calls.	

/** = non-negative n, with commas every 3 digits ���
 e.g. commafy(5341267) = “5,341,267” */	

public static String commafy(int n) {	

 1: if (n < 1000) 	

	

 2: return “” + n;	

 // n >= 1000	

 3: return commafy(n/1000) + “,” + to3(n%1000);	

}	

/** = p with at least 3 chars —	

 0’s prepended if necessary */	

public static String to3(int p) {	

 if (p < 10) return “00” + p;	

 if (p < 100) return “0” + p;	

 return “” + p;	

}	

 n	

commafy: 1 	

 Demo	

commafy(5341266 + 1)	

6	

Recursive functions	

/** = b c. Precondition: c ≥ 0*/���
public static int exp(double b, int c)	

	

Properties:	

(1)   b c = b * b c-1 	

(2)   For c even	

	

 	

b c = (b*b) c/2	

e.g 3*3*3*3*3*3*3*3	

 = (3*3)*(3*3)*(3*3)*(3*3)	

2	

7	

Recursive functions	

/** = b c. Precondition: c ≥ 0*/���
public static int exp(double b, int c) {	

 if (c = 0)	

 return 1.0;	

 if (c is odd)	

 return b * exp(b, c–1);	

 // c is even and > 0	

 return exp(b*b, c / 2);	

}	

c number of calls	

0 1	

1 2	

2 2	

4 3	

8 4	

16  5	

32 6	

2n n + 1	

32768 is 215	

so b32768 needs only 16 calls!	

8	

Binary arithmetic	

Decimal Binary Octal	

 	

 	

Binary	

00 	

 00 	

 00 	

 	

20 = 1 	

1 	

 	

	

01 	

 01 	

 01 	

 	

21 = 2 	

 	

10 	

	

02 	

 10 	

 02 	

 	

22 = 4 	

 	

100	

03 	

 11 	

 03 	

 	

23 = 8 	

 	

1000 	

04 	

 100 	

 04 	

 	

24 = 16 	

 	

10000	

05 	

 101 	

 05 	

 	

25 = 32 	

 	

100000	

06 	

 110 	

 06 	

 	

26 = 64 	

 	

1000000	

07 	

 111 	

 07 	

 	

215 = 32768 	

1000000000000000	

08 	

 1000 	

 10 	

 	

 	

 	

	

09 	

 1001 	

 11 	

10 	

 1010 	

 12	

Test c odd: Test last bit = 1	

Divide c by 2: Delete the last bit	

Subtract 1 when odd: Change last bit from 1 to 0.	

Exponentiation algorithm processes binary rep. of the exponent.	

9	

Hilbert’s space-filling curve	

Hilbert(1):	

Hilbert(2):	

Hilbert(n):	

H(n-1)���
left	

As the size of each
line gets smaller and
smaller, in the limit,

this algorithm fills
every point in space.
Lines never overlap.	

H(n-1)���
dwn	

H(n-1)���
dwn	

H(n-1)���
right	

10	

Hilbert’s space-filling curve	

