
1	

1	

CS1110 Classes, stepwise refinement 18 Feb 2009	

Miscellaneous points about classes.���
More on stepwise refinement.	

Prelim 7:30-9:00 Thursday, 25 February	

Review session: 1:00-3:00, Sunday, 21 Feb., Philips 101	

Next time:���
Wrapper classes. Read
Section 5.1 of class text 	

2	

Help: Get it now if you need it!!	

• Call Cindy 255-8240 for an appointment with David Gries.

• See a consultant in the ACCEL Sun, Mon, Tues, Wed, Thurs
4:00pm to 11:00pm.	

• See a TA.	

• Peer tutoring (free). Ask in Olin 167 or visit
On http://www.engineering.cornell.edu, click on "student
services". On the page that comes up, click on "Engineering
Learning Initiatives (ELI.) " in the left column, upper part.
Then, click on "peer tutoring" in the left column.

3	

Content of this lecture	

This lecture contains some final miscellaneous points to round out
your knowledge of classes and subclasses. There are a few more
things to learn after this, but we will handle them much later.

•  Inheriting fields and methods and overriding methods.	

 Sec. 4.1 and 4.1.1: pp. 142–145	

•  Purpose of super and this. Sec. 4.1.1, pp. 144–145.	

•  More than one constructor in a class; another use of this.	

 Sec. 3.1.3, pp. 110–112.	

•  Constructors in a subclass —calling a constructor of the	

 super-class. Sec. 4.1.3, pp. 147–148.	

4	

Employee c= new Employee(“Gries”, 1969, 50000);	

c.toString()	

a0	

Object	

name	

 “Gries”	

 start	

 1969	

salary	

 50,000.00	

getName() setName(String n) …	

toString()	

equals(Object) toString() 	

Employee	

c	

 a0	

Which method toString()
is called?	

Overriding rule or���
bottom-up rule:���
To find out which is used,
start at the bottom of the
class and search upward
until a matching one is
found.	

Terminology. Employee inherits methods and fields from
Object. Employee overrides function toString.	

Sec. 4.1,
page 142	

This class is on
page 105 of the
text.	

5	

Purpose of super and this	

this refers to the name of the object in which it appears.	

super is similar but refers only to components in the partitions above.	

/** = String representation of this
Employee */	

public String toString() {	

 return this.getName() + ", year ” +���
 getStart() + ", salary ” + salary;	

} 	

ok, but unnecessary	

/** = toString value from superclass */	

public String toStringUp() {	

 return super.toString();	

}	

necessary 	

Sec. 4.1, pages
144-145	

a0	

Object	

name	

 “Gries”	

start	

 1969	

salary	

 50,000.00	

getName() ���
setName(String n) {…}	

toString()	

toStringUp() { …}	

equals(Object) ���
 toString() 	

Employee	

6	

A second constructor in Employee	

Provide flexibility, ease of use, to user	

/** Constructor: a person with name n, year hired d, salary s */	

public Employee(String n, int d, double s) {	

 name= n; start= d; salary= s;���
 }	

/** Constructor: a person with name n, year hired d, salary 50,000 */	

 public Employee(String n, int d) {	

 name= n; start= d; salary= 50000; 	

}	

First constructor	

Second constructor;
salary is always 50,000	

/** Constructor: a person with name n, year hired d, salary 50,000 */	

 public Employee(String n, int d) {	

 this(n, d, 50000); ���
}	

 Another version of second
constructor; calls first constructor	

Here, this refers to the other constructor.
You HAVE to do it this way 	

Sec. 3.1.3,
page 110	

2	

7	

a0	

Object	

name	

 “Gries”	

 start	

 1969	

salary	

10,000	

Employee(String, int)	

toString() getCompensation()	

toString() …	

Employee	

Executive	

bonus	

Executive(String, int, double) 	

getBonus() getCompensation()	

toString() 	

50,000	

Calling a superclass
constructor from the
subclass constructor	

public class Executive extends Employee {	

 private double bonus; 	

 /** Constructor: name n, year hired	

 d, salary 50,000, bonus b */	

 public Executive(String n, int d, double b) {	

 super(n, d);	

 bonus= b;	

 }	

}	

The first (and only the first) statement in
a constructor has to be a call to a
constructor of the superclass. If you
don’t put one in, then this one is
automatically used:	

	

super();	

Principle: Fill in superclass fields first.	

Sec. 4.1.3, page 147	

8	

Anglicizing an Integer	

anglicize(“1”) is “one”"
anglicize(“15”) is “fifteen”"
anglicize(“123”) is “one hundred twenty three”"
anglicize(“10570”) is “ten thousand five hundred seventy”"
/** = the anglicization of n.	

 Precondition: 0 < n < 1,000,000 */	

public static String anglicize(int n) {	

}	

9	

Principles and strategies	

Develop algorithm step by step, using principles and strategies
embodied in “stepwise refinement” or “top-down programming.
READ Sec. 2.5 and Plive p. 2-5.	

• Take small steps. Do a little at a time	

• Refine. Replace an English statement (what to do) by a
sequence of statements to do it (how to do it).	

• Refine. Introduce a local variable —but only with a reason	

• Compile often	

• Intersperse programming and testing	

• Write a method specifications —before writing the bodies	

• Separate your concerns: focus on one issue at a time	

10	

Principles and strategies	

• Mañana Principle.	

During programming, you may see the need for a new method.
A good way to proceed in many cases is to: 	

1. Write the specification of the method.	

2. Write just enough of the body so that the program can be
compiled and so that the method body does something
reasonable, but no the complete task. So you put off completing
this method until another time —mañana (tomorrow) —but you
have a good spec for it.	

3. Return to what you were doing and continue developing at
that place, presumably writing a call on the method that was just
“stubbed in”, as we say. 	

