
1!

1!

CS1110 9 Feb 2009 !
Testing; class Object; toString; static fields/methods!

Reading for this lecture: Testing
with JUnit (Appendix I.2.4 &
pp. 385--388), the class Object
(pp. 153-154), function toString
(pp. 112-113), static variables
and methods (Sec. 1.5, p. 47).!

Reading for next two lectures: Executing
method calls, if-statements, the return
statement in a function, local variables.
Section 2 except 2.3.8.!

Note: this will some clarify some
concepts, such as method parameters, that
we’ve had to gloss over so far.!

Assignment 1 due Saturday on CMS.!
Help available at office and consulting hours; see “Staff” webpage. !

Prelim 1. Thu, 25 Feb, 7:30PM!
Prelim 2. Thu, 18 Mar, 7:30PM!
Prelim 3. Tue, 20 Apr, 7:30PM!
Final B, Thu, 13 May, 9:00AM!

3!

Organizing and streamlining the testing process "

Testing: Process of analyzing, running program, looking for bugs
(errors).!
Test case: A set of input values, together with the expected output.!

Develop test cases for a method from its specification ---even
before you write the method’s body.!

/** = number of vowels in word w.!
Precondition: w contains at least 1 letters and nothing else. */!
public int numberOfVowels(String w) {!
 // (nothing here yet!)!
}!

Developing test cases first, in “critique” mode, can prevent wasted work.!

3!

/** An instance is a worker in a certain organization */!
public class Worker {!
 private String name; /* Last name (null if unknown/none,

! ! o.w. at least one character) */!
 private int ssn; // Social security #: in 0..999999999!
 private Worker boss; // Immediate boss (null if none)!

 /** Constructor: a worker with last name n !
 (null if unknown/none), SSN s, and boss b (null if none).!
 * Precondition: if n not null, it has at least one character.!
 * Precondition: s in 0..999999999 with no leading zeros,!
 * so SSN 012-34-5678 should be given as 12345678.*/!
 public Worker(String n, int s, Worker b) {!
 name= n;!
 ssn= s;!
 boss= b;!
 }!

 ."
}!

4!

Test that the boss field is filled in correctly"
 (also tests getter method)!

/** Test constructor*/!
public void testConstructor() {!
 Worker w1= new Worker(“Obama”, 123456789, null);!
 assertEquals(null, w1.getBoss());!

 Worker w2= new Worker(“Biden”, 2, w1);!
 assertEquals(w1, w2.getBoss());!
}!

Every time you click button Test in
DrJava, this method (and all other
testX methods) will be called.!

assertEquals(x,y): test
whether x equals y ; print
an error message and stop
the method if they are not
equal.!

x: expected value,"
y: actual value.!

See page 488 for some
other methods.!

File->new JUnit test case … [save in same directory as Worker.java] imports
junit.framework.TestCase, with key methods."

5!

Class Object: The superest class of them all!

A minor mystery: since Worker doesn’t extend anything, it
seems that it should only have the methods we wrote for it.
But it has some other methods, too.!

Java feature: Every class that does not extend another one
automatically extends class Object. That is,!

!public class C { … }!

is equivalent to!

!public class C extends Object { …}!
6!

Class Object: The superest class of them all!
a1!

Worker!name! Obama!

ssn! 123456789!
boss! null!

a1!

Worker!name! Obama!

ssn! 123456789!
boss! null!

equals(Object)!

toString()!

So this… is really this.!

Object!

Because it is always there, to
avoid clutter, we don’t
generally draw the partition
for superclass Object.!

getBoss()!
…!

getBoss()!
…!

2!

7!

Method toString()!
a1!

Worker!name! Obama!

ssn! 123456789!

boss!

toString()!

null!

equals(Object)!

toString()!

Object!

Convention: c.toString() returns a
representation of folder c, giving info
about the values in its fields.!

Put following method in Worker.!

/** = representation of this Worker
* [etc., see full program] */ "
public String toString() {!
 return name + “, XXX-XX-” + !
 ssn4 + “, Boss:” + boss;!
}!

In appropriate places, the
expression c automatically
does c.toString()!

getBoss()!
…!

8!

Another example of toString()!
/** An instance represents a point (x, y) in the plane */!
public class Point {!
!private int x; // the x-coordinate!
!private int y; // the y-coordinate!
!/** Constructor: An instance for point (xx, yy) */!
!public Point(int xx, int yy) {!

!}!

"/** = a representation of this point in form “(x, y)” */"
"public String toString() {!

 ! !return ;!
!}!

}!

Getter and setter
methods are not

given on this slide!

Function toString should give the values in the
fields in a format that makes sense for the class.!

Example: “(3, 5)”!

Fill these in!

10!

A static method appears not in each folder but only once, in the
file drawer. "
Make a method static if it doesn’t need to be in a folder because
it doesn’t reference the contents of the “containing” folder.!

/** = “b is c’s boss”.!
 Precondition: b and c are not null. */!
public static boolean isBoss(Worker b, Worker c) {!
 return b == c.getBoss();!
}!

/** = “this object is the c’s boss”.!
 Precondition: c is not null. */!
public boolean isBoss(Worker c) {!
 return this == c.getBoss();!
}!

keyword this refers
to the name of the
object in which it

appears!

9!

 …!
 private String name; //last name of this Worker (null if unknown/none)!
 public static int numberOfWorkers= 0; // no. of Worker objects created!
 …!

a0!

Worker!name! “Biden”!

a1!

Worker!name! “Obama”!

numberOfWorkers! 2!
File drawer for class Worker!

A static field appears not in each folder, but is a single entity in
the file drawer. It can be used to maintain information about
many objects.!

Reference the variable by Worker.numberOfWorkers.!

