CS1110 9 Feb 2009
Testing; class Object; toString; static fields/methods

Reading for this lecture: Testing Reading for next two lectures: Executing
with JUnit (Appendix [.2.4 & method calls, if-statements, the return
pp. 385--388), the class Object statement in a function, local variables.

(pp- 153-154), function toString Section 2 except 2.3.8.
(pp. 112-113), static variables

Note: this will some clarify some
and methods (Sec. 1.5, p. 47).

concepts, such as method parameters, that
we’ve had to gloss over so far.

Prelim 1. Thu, 25 Feb, 7:30PM
Prelim 2. Thu, 18 Mar, 7:30PM
Prelim 3. Tue, 20 Apr, 7:30PM
Final B, Thu, 13 May, 9:00AM

Assignment 1 due Saturday on CMS.
Help available at office and consulting hours; see “Staff”” webpage.
1

Organizing and streamlining the testing process

Testing: Process of analyzing, running program, looking for bugs
(errors).

Test case: A set of input values, together with the expected output.

Develop test cases for a method from its specification ---even
before you write the method’s body.

= number of vowels in word w.

Precondition: w contains at least 1 letters and nothing else. */
public int numberOfVowels(String w) {

// (nothing here yet!)

¥

Developing test cases first, in “critique” mode, can prevent wasted work.

An instance is a worker in a certain organization */
public class Worker {
private String name; /* Last name (null if unknown/none,
0.w. at least one character) */
private int ssn; /I Social security #: in 0..999999999
private Worker boss; // Immediate boss (null if none)

/** Constructor: a worker with last name n
(null if unknown/none), SSN s, and boss b (null if none).
* Precondition: if n not null, it has at least one character.
* Precondition: s in 0..999999999 with no leading zeros,
* 50 SSN 012-34-5678 should be given as 12345678.%/
public Worker(String n, int s, Worker b) {
name= n;
ssn=s;
boss=b;
¥

Test that the boss field is filled in correctly
(also tests getter method)
File->new JUnit test case ... [save in same directory as Worker.java] imports
junit.framework TestCase, with key methods.
/%% Test constructor*/
public void testConstructor() {
Worker w1=new Worker(“Obama”, 123456789, null);
assertEquals(null, wl.getBoss());

assertEquals(x,y): test

. whether x equals y ; print
Worker w2=new Worker(*Biden”, 2, wl);

. an error message and stop
sertEquals(w1, w2.getBoss()); "
} assertEquals(wl, w2 getBoss() the method if they are not

equal.

x: expected value,

: actual value.
Every time you click button Test in R

DrJava, this method (and all other See page 488 for some
testX methods) will be called. other methods.

Class Object: The superest class of them all

A minor mystery: since Worker doesn’t extend anything, it
seems that it should only have the methods we wrote for it.
But it has some other methods, too.

Java feature: Every class that does not extend another one
automatically extends class Object. That is,

publicclassC { ... }
is equivalent to

public class C extends Object { ...}

Class Object: The superest class of them all

al il
name
ssn .
getBoss() equals(Object)
boss .
toString()
Sothis.. is really this] name | Obama || Worker
ssn |1 9

Because it is always there, to

avoid clutter, we don’t boss
generally draw the partition

for superclass Object.

getBoss()

Method toString()

Convention: c.toString() returns a al
representation of folder c, giving info
about the values in its fields.

equals(Object)
Put following method in Worker.
toString()
/ representation of this Worker
* [etc., see full program] */
public String toString() { name | Obama Worker

return name + <, XXX-XX-" +
ssnd + ““, Boss:” + boss;
¥ boss
In appropriate places, the
expression ¢ automatically toString()
does c.toString()

ssn
getBoss()

Another example of toString()

An instance represents a point (X, y) in the plane */

public class Point { Getter and setter
private int x; // the x-coordinate methods are not
private int y; // the y-coordinate given on this slide

* Constructor: An instance for point (xx, yy) */

public Point(int xx, int yy) {

}

/** = a representation of this poiptin form “(x, y)

public String toString() {
return ;

99 s

}
} Function toString should give the values in the
fields in a format that makes sense for the class.

A static method appears not in each folder but only once, in the
file drawer.

Make a method static if it doesn’t need to be in a folder because
it doesn’t reference the contents of the “containing” folder.

this Obj.cvcl is lh.c ¢’s boss - keyword this refers
Precondition: ¢ is not null. */
blic bool isBoss(Work to the name of the
public boolean isBoss(Worker ¢) { object in which it

return this == c.getBoss(); appears

}

/** =*“bis c’s boss”.
Precondition: b and c are not null. */
public static boolean isBoss(Worker b, Worker ¢) {
return b == c.getBoss();

}

A static field appears not in each folder, but is a single entity in
the file drawer. Tt can be used to maintain information about
many objects.

private String name: //last name of this Worker (null if unknown/none)
public static int numberOfWorkers= 0; // no. of Worker objects created

al

numberOfWorkers

File drawer for class Worker

Reference the variable by Worker.numberOfWorkers.)

