
1!

1!

CS1110 4 February. Customizing a class & testing!

Quiz 2 on Tuesday 9 February "
Purpose of a constructor (slide 5)"
Evaluating a new expression (slide 6)!

•  Fields; getter & setter methods."
Secs 1.4.1 (p. 45) & 3.1 (pp. 105–110 only)!

•  Constructors. Sec. 3.1.3 (p. 111–112)!
•  Testing methods. Appendix I.2.4 (p. 486)!

Next time:!

Testing using JUnit.!

Object: the superest
class of them all. pp

153–154.!

Function toString.!

Static components "
 Sec. 1.5 (p. 47).!

Assignment A1 out, due Friday 13 February "
Writing and testing a class definition!

Labs and one-on-ones (schedule yours on CMS) will help you with it.!

2!

Field: a variable that is in each folder of a class.!
a0!

Worker!name! …!

ssn! …!
boss! …!

Usually, fields are private, so methods that are outside the class
can’t reference them. Slightly confusing: you can access them in the
DrJava interactions pane if preferences are set appropriately.!

public class Worker {!

}!

/** An instance is a worker in a certain organization. */!

Declarations of fields!

 private String name; // Last name (null if unknown/none) !
 private int ssn; // Social security #: in 0..999999999 !
 private Worker boss; // Immediate boss (null if none) !

3!

Getter and setter methods!
a0!

Worker!name! …!

ssn! …!
boss! …!

In the definition of Worker!
(we post our code on the website):!
 /** = worker’s last name*/!
 public String getName() {!
 return name;!
 }!

 /** Set worker’s last name to n */!
 public void setName(String n) {!
 name= n;!
 }!

 /** = last 4 SSN digits, as an int*/!
 (Try writing it yourself. !
 Should there also be a setter? What
about for boss?)!

Getter methods (functions) get
or retrieve values from a folder.!

Setter methods (procedures) set
or change fields of a folder!

getName() setName(String t)!

4!

Initialize fields when a folder is first created!

We would like to be able to use
something like!

 new Worker(“Obama”, 1, null)!
to create a new Worker, set the last
name to “Obama”, the SSN to
000000001, and the boss to null.!

For this, we use a new kind of"
method, the constructor.!

a0!

Worker!name! …!

ssn! …!
boss! …!

getName() setName(String t)
…!

5!

Purpose of a constructor:"
 To initialize (some) fields of a newly created object!

In the class definition of Worker:!
 /** Constructor: an instance with last
name n, SSN s (an int in 0..999999999,
and boss b (null if none) */!
 public Worker(String n, int s,"
 Worker b) {!
 name= n;!
 ssn= s;!
 boss= b;!
 }!

a0!

Worker!name! …!

ssn! …!
boss! …!

getName() …!

Worker(String n, "
 int s, Worker b)!

The name of a constructor: the name of the class.!

Do not put a type or void here!
6!

New description of evaluation of a new-expression!

new Worker(“Obama”, 1, null)!

1.  Create a new folder of class "
Worker, with fields initialized to
default values (e.g. 0 for int) –of
course, put the folder in the file
drawer.!

2. Execute the constructor call!

 Worker(“Obama”, 1, null)!
3. Use the name of the new "

object as the value of the "
new-expression.!

a0!

Worker!name! …!

ssn! …!
boss! …!

getName() setName(String
t)!

Worker(String t, "
 int i, Worker c) …!

Memorize this new definition! Today! Now!!

2!

7!

Testing —using JUnit !

Bug: Error in a program.!

Testing: Process of analyzing, running program, looking for bugs.!

Test case: A set of input values, together with the expected output.!

Debugging: Process of finding a bug and removing it.!

Get in the habit of writing test cases for a method from the
method’s specification --- even before you write the method’s
body. !

A feature called Junit in DrJava helps us develop test cases
and use them. You have to use this feature in assignment A1.!

8!

1. w1= new Worker(“Obama”, 1, null);!
!Name should be: “Obama”; SSN: 1; boss: null. !

2. w2= new Worker(“Biden”, 2, w1);!
!Name should be: “Biden”; SSN: 2; boss: w1. !

To create a testing framework: select menu File item new Junit
test case…. At prompt, put in class name WorkerTester. This
creates a new class with that name. Save it in same directory as
class Worker.!

The class imports junit.framework.TestCase, which provides
some methods for testing.!

Need a way to run these test cases, to see whether the fields
are set correctly. We could use the interactions pane, but then
repeating the test is time-consuming.!

Here are two test cases!

9!

/** A JUnit test case class.!
 * Every method starting with "test" will be called when running!
 * the test with JUnit. */!
public class WorkerTester extends TestCase {!

 /** A test method.!
 * (Replace "X" with a name describing the test. Write as!
 * many "testSomething" methods in this class as you wish,"
 * and each one will be called when testing.) */!
 public void testX() {!
 }!
}! One method you can use in testX is!

assertEquals(x,y)!

which tests whether expected value x equals y!

10!

A testMethod to test constructor (and getter methods)!
/** Test first constructor and getter methods getName,!
 getSSN4, and getBoss*/!
public void testConstructor() {!
 Worker w1= new Worker(”Obama", 123456789, null);!
 assertEquals("Obama”, w1.getName(),);!
 assertEquals(6789, w1.getSSN4());!
 assertEquals(null, w1.getBoss());!

 Worker w2= new Worker(”Biden", 2, w1);!
 assertEquals(”Biden”, w2.getName());!
 assertEquals(2, w2.getSSN4());!
 assertEquals(w1, w2.getBoss());!
}!

Every time you click button Test in
DrJava, this method (and all other
testX methods) will be called.!

first
test
case!

second
test
case!

assertEquals(x,y): !

test whether x equals y ;
print an error message
and stop the method if
they are not equal.!

x: expected value,"
y: actual value.!

A few other methods that
can be used are listed on
page 488.!

