CS1110 4 February. Customizing a class & testing
 Fields; getter & setter methods.
Secs 1.4.1 (p. 45) & 3.1 (pp. 105-110 only)
« Constructors. Sec. 3.1.3 (p. 111-112)
 Testing methods. Appendix 1.2.4 (p. 486)

Next time:
Testing using JUnit.

Object: the superest
class of them all. pp

. 153-154.
Quiz 2 on Tuesday 9 February

Purpose of a constructor (slide 5)
Evaluating a new expression (slide 6)

Function toString.
Static components
Sec. 1.5 (p. 47).

Assignment A1 out, due Friday 13 February
Writing and testing a class definition

Labs and one-on-ones (schedule yours on CMS) will help you with it.

Field: a variable that is in each folder of a class.

al
mame [Worker]

ssn

.
boss |:|

Declarations of fields

/** An instance is a worker ii¥a certain organization. */

public class Worker {

private String name; / Last name (null if unknown/none)
private int ssn; // Social security #: in 0..999999999
private Worker boss; / Immediate boss (null if none)

}

Usually, fields are private, so methods that are outside the class
can’t reference them. Slightly confusing: you can access them in the
DrJava interactions pane if preferences are set appropriately.

Getter and setter methods

In the definition of Worker a0

(we post our code on the website):

ok — ’s last name* Worker
/** = worker’s last name*/ name |:|

return name; ssn |:|

public String getName() {
¥ boss

/#% Set worker’s last name to n */ getName() setName(String t)
public void setName(String n) {

name= n; .
) Getter methods (functions) get

or retrieve values from a folder.

/#% = last 4 SSN digits, as an int*/ Setter methods (procedures) set
(Try writing it yourself. or change fields of a folder
Should there also be a setter? What

about for boss?)

Initialize fields when a folder is first created

We would like to be able to use
something like
new Worker(“Obama”, 1, null)

to create a new Worker, set the last
name to “Obama”, the SSN to
000000001, and the boss to null.

For this, we use a new kind of
method, the constructor.

a0

mme [.]

ssn

.

getName() setName(String t)

Purpose of a constructor:
To initialize (some) fields of a newly created object

In the class definition of Worker: 20
/*#* Constructor: an instance with last
name n, SSN's (an int in 0..999999999,
and boss b (null if none) */ name |:|

public Worker(String n, int s, -
‘Worker b) {

.

getName()

¥ Worker(String n,

int s, Worker b)

The name of a congtructor: the name of the class.

Do not put a type or void here

New description of evaluation of a new-expression

new Worker(“Obama”, 1, null)

—_

. Create a new folder of class
Worker, with fields initialized to
default values (e.g. O for int) —of
course, put the folder in the file

drawer.
2. Execute the constructor call
Worker(“Obama”, 1, null)
3. Use the name of the new

object as the value of the
new-expression.

a0

mame [Worker]

getName() setName(String
t)

Worker(String t,
int i, Worker ¢) ...

Memorize this new definition! Today! Now!

Testing —using JUnit

Bug: Error in a program.
Testing: Process of analyzing, running program, looking for bugs.
Test case: A set of input values, together with the expected output.
Debugging: Process of finding a bug and removing it.

Get in the habit of writing test cases for a method from the

method’s specification --- even before you write the method’s
body.

A feature called Junit in DrJava helps us develop test cases
and use them. You have to use this feature in assignment A1l.

1. wl=new Worker(“Obama”, 1, null);
Name should be: “Obama”; SSN: 1; boss: null.
Here are two test cases
2. w2=new Worker(“Biden”, 2, wl);
Name should be: “Biden”; SSN:2; boss: wl.

Need a way to run these test cases, to see whether the fields
are set correctly. We could use the interactions pane, but then
repeating the test is time-consuming.

To create a testing framework: select menu File item new Junit
test case.... At prompt, put in class name WorkerTester. This
creates a new class with that name. Save it in same directory as
class Worker.

The class imports junit.framework.TestCase, which provides
some methods for testing. N

/#% A JUnit test case class.

* Every method starting with "test" will be called when running
* the test with JUnit. */

public class WorkerTester extends TestCase {

/#% A test method.

* (Replace "X" with a name describing the test. Write as

* many "testSomething" methods in this class as you wish,
* and each one will be called when testing.) */

public void testX() {

¥

} One method you can use in testX is
assertEquals(x,y)

which tests whether expected value x equals y

A testMethod to test constructor
est first constructor and getter methods getName,
getSSN4, and getBoss*/
public void testConstructor() {

Firsi ‘Worker w1=new Worker("Obama", 123456789, null);
assertEquals("Obama”, wl.getName(),);
st ssertEquals(6789, wl.getSSNA():
case assertEquals(null, wl.getBoss());

/

assertEquals(x,y):

test whether x equals y ;
WorkleEr w2l:({f}e3\§;l Wgrke;("B:Iien", (2» wl); print an error message
assertEquals(Biden”, w2.getName()); .
test assenEguals(l w2.getSSNg4()); B! i fie el
case assertEquals(w1, w2.getBoss());
} x: expected value,
y: actual value.

second

they are not equal.

Every time you click button Test in A few other methods that
DrJava, this method (and all other can be used are listed on
testX methods) will be called. page 488.

10

