
CS1110 Lec 24 23 November 2010 Exceptions in Java

1	

Reading for today: 10. Next lecture: Ch 9.3	

No labs this week, no TA office hours Wed-Fri, see consultant calendar for the
updated schedule.	

There are "labs" next week, but they will serve as office hours plus an optional
exercise on exceptions (covered on final).	

Final: Friday Dec 10th, 9-11:30am, Statler Auditorium.	

Register conflicts (same time, or 3 finals in 24 hours) on CMS assignment "final
exam conflicts" by Tuesday November 30th.	

Please check that your grades on CMS match what you think they are. [For lab-grade
issues, contact your lab TA, not the instructors.]	

A7: remember, "Don't look at any other student/group's code, in any form; don't
show any other student/group your code". 	

(The similarity software turned up a few problems on A6, which we are about to start the Academic Integrity violation
process for. Note that the checker essentially performs variable-name substitutions, etc., so syntactic modification of
the same original program is generally flagged.)	

Today’s (and next week's lab’s) topic : when things go wrong (in Java)

Q1: What happens when an error causes the system to abort? 	

Important example: a “regular person” enters malformed input.

Understanding this helps you debug.	

(NullPointerException, ArrayIndexOutOfBoundsException, …)	

Q2: Can we make use of the "problem-signaling
mechanism" to handle unusual situations in a more
appropriate way? 	

It is sometimes better to warn and re-prompt the user
than to have the program crash (even if the user didn’t follow
your exquisitely clear directions or preconditions).

2	

Understanding this helps you write more flexible code.

/** Exception example */	

public class Ex { 	

 public static void first() {	

 second();	

 }	

 public static void second() {	

 third();	

 }	

 public static void third() {	

 int x= 5 / 0;	

 }	

}	

Call: Ex.first();	

3	

.System prints the call-stack
trace:	

at Ex.second(Ex.java:9)	
at Ex.first(Ex.java:5)	

ArithmeticException: / by zero	
 at Ex.third(Ex.java:13)	

13	

9	

line 5	

Same structure as our demo:	

StockQuoteGUI's actionPerformed calls StockQuote's getQuote,	

 which calls In's constructor and readAll methods.	

errors (little e) cause Java to throw a Throwable object as a “distress signal”	

Errors are
signals that

things are
beyond help.	

Exceptions are
signals that
intervention may
still be possible;
they can be
“handled”.	

Throwable	

Exception	

 Error	

RuntimeException	

ArithmeticException	

…	

 …	

…	

 …	

OutOfMemoryError	

…	

Throwable	

a0	

“/ by zero”	

detailMessage	

backtrace	

… 	

Exception	

RuntimeException	

ArithmeticException	

<call stack>	

4	

/** Exception example */	

public class Ex { 	

 public static void first() {	

 second();	

 }	

 public static void second() {	

 third();	

 }	

 public static void third() {	

 int x= 5 / 0;	

 }	

}	

Call: Ex.first();	

5	

In this example, the Java system
catches it because nothing else
does, it just prints the call-stack
trace and aborts.	

Throwable object --- request for help
--- is thrown to successive “callers”
until caught by a method that
declares that it can provide help.
(This is a form of communication
between methods.)	

AE	

a0	

at Ex.second(Ex.java:9)	
at Ex.first(Ex.java:5)	

ArithmeticException: / by zero	
 at Ex.third(Ex.java:13)	

Execute the try-block. If it
finishes without throwing
anything, fine.	

If it throws an
ArithmeticException
object, catch it (execute
the catch block); else
throw it out further.	

/** = reciprocal(x), or -1 if x is 0.	

 Assume you can't change this spec. */	

public static double ourReciprocal(int x) {	

 return reciprocal(x);	

}	

try {	

}	

catch (ArithmeticException ae) {	

 return -1;	

}	

6	

How can we catch/handle Throwables? With Try/catch blocks.	

/** = reciprocal of x. Thows an ArithmeticException if x is 0. 	

 (Assume this is third-party code that you can’t change.)*/	

public static double reciprocal(int x) {	

 …; 	

}	

/** = reciprocal(x), or -1 if x is 0*/	

public static double ourReciprocal2(int x) {	

 return reciprocal(x);	

}	

if (x != 0) {	

}	

 else {	

 return -1;	

}	

7	

Try-statements vs. if-then checking	

The previous slide was just to show try/catch syntax. Use your judgment:	

• For (a small number of) simple tests and “normal” situations, if-thens are
usually better. For more “abnormal” situations, try-catches are better. 	

 [In this case, given the specification, if/then is maybe slightly better; anyone reading the
code would expect to see a check for 0.]	

• There are some canonical try/catch idioms, such as processing malformed
input.	

/** Illustrate exception handling*/	

public class Ex { 	

 /** = array of n -1’s.	

 Throws an
IllegalArgumentException if n <=0*/ 	

 private static int[] initArray(int n)
{	

 if (n <= 0) {	

 throw new���
 IllegalArgumentException���
 (“initArray: bad

	

 	

value for n, namely ”
	

 	

+ n);	

 }	

 …	

}	

java.lang.IllegalArgumentException: 	

initArray: bad value for n, namely -1	

	

at Ex.initArray(Ex.java:20)	

8	

How can we create our own
signals? 	

• We can create new Throwable
objects, via new-statements.	

• We can write our own
Exception subclasses (see
demo)	

Ex.initArray(-1);	

A technical point: we may need a “throws” clause to compile

/** Class to illustrate exception handling */	

public class Ex2 {	

 public static void first() throws OurException {	

 second();	

 }	

 public static void second() throws OurException {	

 third();	

 }	

 public static void third() throws OurException {	

 throw new OurException(“intentional error at 	

 third”);	

 }	

Don’t worry
about whether

to put a throws-
clause in or not.

Just put it in
when it is

needed in order
for the program

to compile.	

[runtime exceptions

don't require a
throws-clause; other

kinds do]	

9	

tell the system that an
OurException might get thrown	

