
1	

1	

CS1110 Lecture 23, 18 Nov 2010 Listening to GUIs	

Reading for today: Ch 17.4.1,
17.4.4. [Optional: Ch. 12.1 & 12.1.1
(interfaces)]	

For next lecture: Ch 10 (exceptions)	

No labs next week.	

There are labs on last week of classes, but they will be office hours plus an optional
exercise on exceptions (covered on final).	

Final: Friday Dec 10th, 9-11:30am, Statler Auditorium.	

Register conflicts on CMS assignment "final exam conflicts" by Monday November
30th.	

A7 out due Fri Dec 3; A6 officially due tonight. 	

If a staff member isn't at their office
hours, email djg17@cornell.edu,
llee@cs.cornell.edu,
dcv22@cornell.edu, and the missing
person immediately! We might be able
to locate a sub --- but you have to tell
us there's a problem!	

2	

enter ticker symbol	

last quote:	

 goog 584.52 @ 11/17/10 10:54:38 AM	

record quote	

 clear record	

goog 584.52 @ 11/17/10 10:34:38 AM	

goog 484.52 @ 11/17/10 10:44:38 AM	

goog 584.52 @ 11/17/10 10:54:38 AM	

record	

buttonBox	

leftBox	

 rightBox	

Blue: "invisible" organization elements; purple: fields 	

symbolEntry	

 records	

lastQuoteDisplay	

3	

Responding to events (in Java)

• An event is a mouseclick, a mouse movement into or out of a
window, a keystroke, etc.

• To “listen to” (and hence react to) an event:
1.  Write a method that will listen to the event.
2.  Let Java know that the method is defined in the class
3.  Register with the component of interest (a JButton or

JTextField, for example) an instance of the class that
contains the method as a listener for the event
happening to that component.

The reason for this tripartite structure is that we want to use
the ActionListener interface.

4	

Interface java.awt.event.ActionListener
From the API:

The class that is interested in processing an action event
[step 2 from previous slide] implements [ActionListener],
and the object created with that class is [step 3] registered
with a component, using the component's
addActionListener method.

When the action event occurs, that object's [step 1]
actionPerformed method is invoked.

For CS1110, think of ActionListener as an abstract class
---except we write "extends implements ActionListener"---
with abstract procedure actionPerformed(ActionEvent e),
which we must override.

2	

public class StockQuoteGUI extends JFrame implements ���
 ActionListener { // step 2	

 ...	

/** Respond to user (giving a ticker symbol) and hitting "return" */	

public void actionPerformed(ActionEvent ae) {// step 1	

	

symbol= symbolEntry.getText();	

 lastQuote= StockQuote.getQuote(symbol); …	

}	

 /** Constructor: a new StockQuoteGUI */	

 public StockQuoteGUI() {	

symbolEntry.addActionListener(this); // step 3	

…	

 }	

}	

5	

Question: how do we display (update) the newest "last quote"?	

–  We need to "overwrite" the previous quote, not just add a new one.	

6	

Solution: keep a JLabel in the desired location, and just change
that JLabel's text:	

 lastQuoteDisplay.setText(s + " " + lq + " @ " +
dateFormat.format(lqtime));	

repaint();	

Caveat re: A7	

In some sense, the ACM package hides some of this
machinery "under the hood".	

Read the assignment handout carefully when it comes to
making the paddle respond to the mouse.	

7	

