
11/11/10	

1	

1	

CS1110 11 November Testing/Debugging. And Applications	

Read chapter 14, pp. 385–401	

Prelim 2
Max 100
Median 82
Mean 78.3
Min 20

100 1 *
90-99 53 ***************************
80-89 78 ***************************************
70-79 48 ************************
60-69 30 ***************
50-59 11 ******
40-49 03 **
30-39 03 **
20-29 03 **

TAs can fix obvious mistakes.
Real regrade request? Write note

explaining the issues, attach to
prelim, give to Gries or Lee

before Thanksgiving.	

Check your score against CMS
score, let us know if there is a
mistake.

Recursion question	

2	

/** = "there is a path of male best friends from s to e".	

Precondition: s, e not null; 	

 s and e are male; */	

public static boolean malePathTo (Person s, Person e) {	

}
malePathTo(new Vector(), s, e);

Recursion question	

3	

/** = "there is a path of male best friends from s to e	

 that does not contain a Person in list ig".	

Precondition: s, e, and ig are not null; 	

 s and e are male;	

 s and e are not in ig. */	

public static boolean malePathTo(Vector<Person> ig,	

 Person s, Person e)

Recursion question	

4	

/** = "there is path of male best friends from s to e that does not contain a
Person in list ig".	

Precond: s, e, and ig are not null; s and e are male; s and e are not in ig. */	

public static boolean malePathTo(Vector<Person> ig, Person s, Person e) {	

 if (s == e) return true;
 if (s.getMBF() == null) return false;

 ig.add(s);

 if (ig.contains(s.getMBF())) return false;

 return malePathTo(ig, s.getMBF, e);

}

base case: path of one node!!!!!	

make sure s is not looked at again	

Look at the def of the path above	

Note that this call satisfies all
parts of the precondition of the
specification.	

5	

Testing: Read chapter 14.	

Bug: Error in a program.	

Testing: Process of analyzing, running program, looking for bugs.	

Test case: A set of input values, together with the expected output.	

Debugging: Process of finding a bug and removing it.	

Exceptions: When an error occurs, like divide by 0, or s.charAt[i]
when i = – 1, Java throws an exception. A lot —generally too much
— information is provided. 	

Two ideas on test cases:	

1. Black Box Testing: Develop test cases based on the spec.	

2. White Box Testing: Look at the code; develop test cases so that
each statement/expression is exercised in at least one test case.	

6	

Exceptions: When an error occurs, like divide by 0, or s.charAt[i]
when i = – 1, Java throws an exception.	

06 /** = String s truncated …. */	

07 public static String truncate5(String s) {	

08 int b= 10 / 0;	

09 if (s.length() <= 5)	

10 return s;	

11 return s.substring(0,5);	

12 }	

ArithmeticException: / by zero	

 at A4Methods.truncate5(A4Methods.java:8)	

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)	

 at sun.reflect.NativeMethodAccessorImpl.invoke(….java:39)	

 at sun.reflect.DelegatingMethodAccessorImpl.invoke(….java:25)	

 at java.lang.reflect.Method.invoke(Method.java:585)	

important part	

Turn on line
numbering in
DrJava.
Preferences /
Display Options	

call stack	

11/11/10	

2	

7	

Debugging a program	

Strategy 0: Find a simplest possible test case that exhibits the error.	

When an error occurs, you have to play detective and find it.
That process is called debugging. The place where the bug is
may be far removed from the place where an error is revealed.	

Strategy 1: put print statements, suitably annotated, at judiciously
chosen places in the program.	

Strategy 3: Use the debugging feature of your IDE (Interactive
Development Environment —yours is DrJava.	

Strategy 2: Use Java assert-statements at good places:	

 assert <boolean expression> ;	

8	

Assert statement	

Example: Use it to check preconditions:	

/** = “This Virus is the predecessor of v”.	

 Precondition: v is not null */	

public boolean isPredecessorOf(Virus v) {	

 assert v != null;	

 …	

}	

Use it to program “defensively”, and leave it in the program	

9	

Debugging a program	

public static HSV RGB2HSV(Color rgb) {	

 …	

 /**Set MAX, MIN to max and min of R, G, B */	

 double MAX= 0; double MIN= 0; 	

 if (R>G && R>B) {MAX= R; }	

 if (G>B && G>R) {MAX= G;}	

 if (B>R && B>G) {MAX= B;}	

 if (R<G && R<B) {MIN= R; }	

 if (G<B && G<R) {MIN= G; }	

 if (B<R && B<G) {MIN= B;}	

When an error occurs, play detective and find it. Called
debugging. The place where the bug is may be far removed
from the place where an error is revealed.	

System.out.println("R " + R + ", G " + G +���
 	

 ", B ” + B + ", MAX " + MAX);	

If you just output
the numbers
without naming
them, you will have
trouble.	

10	

Debugging a program	

public static HSV RGB2HSV(Color rgb) {	

 …	

 /**Set MAX, MIN to max and min of R, G, B */	

 double MAX= 0; double MIN= 0; 	

 if (R>G && R>B) {MAX= R; }	

 if (G>B && G>R) {MAX= G;}	

 if (B>R && B>G) {MAX= B;}	

 if (R<G && R<B) {MIN= R; }	

 if (G<B && G<R) {MIN= G; }	

 if (B<R && B<G) {MIN= B;}	

When an error occurs, play detective and find it. Called
debugging. The place where the bug is may be far removed
from the place where an error is revealed.	

assert R <= MAX && G <= MAX && B <= MAX;	

assert MIN <= R && MIN <= G && MIN <= B;	

These assert
statements don’t
check completely
that MAX is the
max and MIN the
min.	

11	

public static HSV RGB2HSV(Color rgb) {	

 …	

 if (R>G && R>B) {MAX= R; }	

 if (G>B && G>R) {MAX= G;}	

 if (B>R && B>G) {MAX= B;}	

 if (R<G && R<B) {MIN= R; }	

 if (G<B && G<R) {MIN= G; }	

 if (B<R && B<G) {MIN= B;}	

 System.out.println("R " + R + ", G " + G +���
 	

 ", B ” + B + ", MAX " + MAX);	

> A4Methods.RGB2HSV(new java.awt.Color(255,255,128))	

R 1.0, G 1.0, B 0.502, MAX 0.0	

Look! MAX is 0 and not 1!	

call and output	

if conditions should be >= , not >	

12	

…	

if (Hi ==0){	

 R=(int)(v * 255.0);	

 G=(int)(t * 255.0);	

 B=(int)(p * 255.0);	

}	

if (Hi==1){	

 R=(int)(q * 255.0);	

 G=(int)(v * 255.0);	

 B=(int)(p * 255.0);	

}	

…	

int r= (int)Math.round(R);	

Error in HSVtoRGB.
Not rounding properly	

System.out.println(“In HSVtoRGB. R is “ + R);	

System.out.println(“In HSVtoRGB. r is “ + r);	

Insert
println

statements.	

11/11/10	

3	

13	

Executing Java programs outside the DrJava Interactions pane	

The Java application 	

public class C {	

 …	

 public static void main(String[] args) {	

 …	

 }	

 …	

}	

A Java application needs
a class with a method

main that is defined���
like this.	

To start the application,
method main is called.	

The parameter, an array of Strings, can
be used to pass information into the
program.	

14	

14	

public class CLAS {	

 …	

 public static void main(String[] args) {	

 …	

 }	

 …	

}	

> cd	

> dir	

 (list of files)	

> java CLAS	

Terminal window	

(can type “java CLAS” in DrJava Interactions pane)	

Causes method call	

CLAS.main(null);	

to be executed	

15	

15	

jar file (Java Archive file)	

(like tar file (Tape Archive file))	

Contains (among other things)	

(1)  .class files	

(2)  a “manifest”, which says which class has method main	

Manifest:	

A list of passengers or an invoice of cargo for a vehicle
(as a ship or plane).	

Look in index of
text for info on jar
files and how to
build them in the
command-line
window.	

16	

16	

Standalone Java programs	

Suppose images.jar contains a Java application	

It has a class with a static procedure main,���

and its manifest names the class.	

• Execute it by double clicking its icon in a directory.	

• Execute it by typing	

 java -jar images.jar	

 in a terminal window (or DOS, or command-line window)	

17	

17	

Inspecting jar files	

 jar -tf images.jar 	

type (list)	

 File	

 name of
jar file	

List the contents of jar
file images.jar	

18	

18	

Creating a jar file	

1.  Navigate to the directory that contains the .class files.	

2.  Create a text file x.mf that contains one line (with a line-feed):	

	

 	

Main-class: <name of class>	

3.  In the directory, type:	

 	

 	

jar -cmf x.mf app.jar *.class	

Create	

 Manifest	

 File	

name of

manifest file	

name of file

to create	

expands to
name all

the .class files	

