
1	

CS1110 lecture 5 14 Sept 2010 ���
Testing; the class Object; toString; static variables & methods	

Reading for this lecture: Testing
with JUnit (Appendix I.2.4 &
pp. 385--388), the class Object
(pp. 153-154), function toString
(pp. 112-113), static variables
and methods (Sec. 1.5, p. 47).	

Reading for next two lectures: Executing
method calls, if-statements, the return
statement in a function, local variables.
Chapter 2 except 2.3.8 and 2.3.9.	

This reading will some clarify some
concepts, such as method parameters, that
we’ve had to gloss over so far.	

Keep your iClickers and a sheet of paper out.	

A1 (still) due Saturday Sept 18 on CMS; group yourselves by Wed. 	

Ignore “Extended Until” on CMS	

(We have to apply a fake extension and halt grouping to enable iterative feedback on CMS.)	

1	

Email re: lab 03, quiz 2, etc. was sent on Saturday. Bouncing emails: cabooserwar,
blacktora4546, jfk54, tariq.mozaini, lukeg432, dc.mcmurtry10, khyjhcho. 	

www.CourseHero.com	

You can find answers to
thousands of exercises in	

hundreds of textbooks,
essays, and other material	

Finding 50 students in a
course who downloaded
answers for a HW is
alarming faculty and
causing them to change
attitudes toward HW.	

CTO, co-founder: James Ioannidis, CS/ECE double major,	

	

 	

 	

 	

 	

 	

 	

 	

 	

	

 	

 	

graduated May 2007	

CEO, co-founder: Andrew Grauer, Spanish major,	

	

 	

 	

 	

 	

 	

 	

 	

 	

	

 	

 	

graduated May 2010	

Developed by Cornell students	

Organizing and streamlining the testing process ���

Testing: Process of analyzing and running a program, looking for
bugs (errors).	

Test case: A set of input values, together with the expected output.	

Develop test cases for a method from its specification --- even
before you write the method’s body.	

/** = number of vowels in word w.	

Precondition: w contains at least one letter and nothing but letters*/	

public int numberOfVowels(String w) {	

 // (nothing here yet!)	

}	

Test cases “need”, “rhythm” (expected output?) reveal vagueness in the spec!	

Developing test cases first, in “critique” mode, can prevent wasted work.	

 3	

"Slinky Dog"	

j0	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

w0	

0	

…	

dName	

Person	

s0	

Person(String, int, boolean)	

…	

"Jessie"	

null	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

b0	

3	

…	

dName	

Person	

j0	

Person(String, int, boolean)	

…	

"Buzz Lightyear"	

j0	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

w0	

2	

…	

dName	

Person	

b0	

Person(String, int, boolean)	

…	

"Woody"	

j0	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

b0	

2	

…	

dName	

Person	

w0	

Person(String, int, boolean)	

…	

"Lotso"	

null	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

L0	

…	

dName	

L0	

Person(String, int, boolean)	

…	

1	

Person	

"talking telephone"	

null	

bestFemaleFr	

bestMaleFr	

numIsBFOf	

null	

0	

…	

dName	

Person	

t0	

Person(String, int, boolean)	

…	

A1 possible test cases 	

4	

Specifications and headers for methods in class Worker, plus test cases 	

 /** Constructor: a worker with last name n ("" if none), SSN s,	

 * and boss b (null if none).	

 * Precondition: n is not null, s in 0..999999999 with no leading zeros,	

 * so SSN 012-34-5678 should be given as 12345678.*/	

 public Worker(String n, int s, Worker b) 	

/** = worker's last name */	

public String getName()	

/** Set worker's last name to n ("" if none).	

 * Precondition: n is not null.*/	

 public void setName(String n)	

/** = last 4 SSN digits without leading zeroes. */	

public int getSSN4()	

 /** = worker's boss (null if none) */	

 public Worker getBoss()	

 /** Set boss to b */	

 public void setBoss(Worker b)	

a1	

Worker	

lname	

 "Obama"	

ssn	

 123456789	

boss	

 null	

…	

a0	

Worker	

lname	

 "Biden"	

ssn	

 2	

boss	

 a1	

…	

a1	

 a0	

w2	

w1	

 5	

String	

int	

Worker	

int	

String	

Worker	

assertEquals(x,y): 	

test whether x (expected)
equals y (computed); print
an error message and stop
the method if they are not
equal.	

Pg 48 8 lists some other
methods that can be used.	

/** Test constructor and getters*/	

public void testConstructor() {	

 Worker w1= new Worker("Obama", 123456789, null);	

 assertEquals("Obama", w1.getName());	

 assertEquals(6789, w1.getSSN4());	

 assertEquals(null, w1.getBoss());	

 Worker w2= new Worker("Biden", 2, w1);	

 assertEquals("Biden", w2.getName());	

 assertEquals(2, w2.getSSN4());	

 assertEquals(w1, w2.getBoss());	

 // should test last name "", too	

}	

A testMethod to test a constructor (and getter methods)	

Every time you click button Test in DrJava, all “testX methods” are
called, in some order.	

first
test
case	

second
test
case	

File->new JUnit test case … [save in same directory as Worker.java] imports
junit.framework.TestCase, with key methods.	

6	

2	

Please put your name, netID, and "Quiz 2" on a piece of paper,
circle your last name,
and then answer these questions.

1.  What is the purpose of a constructor?
2.  How do you evaluate a new expression, such as
new myClass()?

QUIZ 2	

Class Object: The superest class of them all	

A minor mystery: since Worker doesn’t extend anything, it
seems that it should have only the methods we wrote for it.
But it has some other methods, too.	

Java feature: Every class that does not extend another one
automatically extends class Object. That is,	

	

public class C { … }	

is equivalent to	

	

public class C extends Object { …}	

8	

Class Object: The superest class of them all	

a1	

Worker	

lname	

 "Obama"	

ssn	

 123456789	

boss	

 null	

a1	

Worker	

lname	

 "Obama"	

ssn	

 123456789	

boss	

 null	

equals(Object)	

toString()	

…	

So this… is really this.	

Object	

Because it is always there, to
avoid clutter, we don’t
generally draw the partition
for superclass Object. (A2 will be
an exception).	

getBoss()	

…	

getBoss()	

…	

9	

Method toString() --- kind of an "ultra-getter"	

Convention: c.toString() returns a String representation of folder c,
giving info about the values in its fields. So we need to override the
Object toString() to be able to talk about the subclass's fields.	

When a String is expected (or in the Interactions pane), the
expression c is evaluated as c.toString() (the "lowest" one).	

/** = e.g., "Obama, XXX-XX-6789, boss null", 	

 	

 	

	

 "Biden, XXX-XX-2, boss Obama" [see posted code for full spec]*/ ���

public String toString() {return ??; } // bad scrunched style, slides are tiny	

(E) none of the above	

(B) lname + ", XXX-XX-" + getSSN4() + ", boss " + boss.getName()	

(D) lname + ", XXX-XX-" + getSSN4() + ", boss " + getBoss()	

(C) getName() + ", XXX-XX-" + getSSN4() + ", boss " + getBoss().getName()	

(A) "lname" + ", XXX-XX-" + "getSSN4()" + ", boss " + "boss.getName()"	

10	

test-case output!	

A static variable appears not in each folder, but as a single entity
in the file drawer. It can be used to maintain information about
multiple folders.	

Example declaration: (goes inside class definition, just like field declarations)	

 private static int numberOfWorkers; // no. of Worker objects created	

a0	

Worker	

lname	

 "Biden"	

a1	

Worker	

"Obama"	

lname	

numberOfWorkers	

 2	

File drawer for class Worker	

Class, not var holding folder name 	

a1	

x	

…	

 …	

a0	

y	

11	

Reference the variable by Worker.numberOfWorkers (if public)	

Make a method static if it doesn’t need to be in all the folders
because:���
it wouldn’t reference the contents of the “containing” folder;���
equivalently, its actions/results would be the exactly the same
no matter which folder it were in. ���

getName() should not be static, but the following should:	

Sample call: Worker.getNumberOfWorkers() ���
Class, not var holding a folder name 	

/** = number of workers ever created. */	

public static int getNumberOfWorkers() {	

 return Worker.numberOfWorkers; /* w/in class, can drop
class name, so "numberOfWorkers" would be OK */	

}	

A static method is also in the drawer, not in individual folders.���

12	

3	

Should the following function be static? ���
(A) yes (B) no ���

/** = "a and b are not null and the last 4 digits of their SSNs
	

are the same". */	

/* (This notation means that the function yields 	

 * the truth value of the quoted statement. 	

 * So, a and b are allowed to be null!) */	

public [static??] boolean clashingSSNs(Worker a, Worker b) {	

 return a != null && b != null 	

	

&& a.getSSN4() == b.getSSN4(); 	

}	

13	

